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Rate-Constrained Delay Optimization
for Slotted Aloha
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Abstract— Slotted Aloha provides a simple way for accom-
modating the massive access of Machine-to-Machine (M2M)
communications. Yet, the delay performance of slotted Aloha has
long been observed to significantly deteriorate as the network
size grows. It is therefore important to study how to optimize
the delay performance of slotted Aloha in a large-scale network.
This paper focuses on the optimization of access delay of a
buffered slotted Aloha network, where n nodes transmit to a
common receiver in fading channels. Specifically, by deriving
the closed-form expressions of the network steady-state points in
both unsaturated and saturated conditions, the first and second
moments of access delay of each packet are obtained as explicit
functions of system parameters, and minimized by optimizing the
transmission probability of each node. The analysis shows that
to achieve the minimum mean access delay, the transmission
probability of each node should be reduced as the network size
increases, leading to a diminishing node data rate unless the
information encoding rate is jointly optimized. The minimum
mean access delay for a given data rate requirement is further
characterized, and effects of key parameters such as the mini-
mum required data rate for each node, the mean received signal-
to-noise ratio of each packet and the number of nodes on the
rate-constrained minimum mean access delay are discussed. The
practical insights of the analysis are also demonstrated by taking
the example of an LTE-M system with smart grid applications.

Index Terms— Slotted Aloha, access delay, machine-to-machine
(M2M) communications.

I. INTRODUCTION

RANDOM access is a fundamental way for multiple users
to share a common channel under distributed control,

where each user independently determines when and how to
access. Depending on whether sensing the channel or not
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Fig. 1. An n-node buffered slotted Aloha network is essentially a multi-queue
single-server system.

before each user’s transmission, random access schemes can
be broadly divided into two categories: Aloha-based [1]
and Carrier Sense Multiple Access (CSMA)-based [2], both
of which have found wide applications in various wireless
networks, such as cellular networks [3] and WiFi networks [4].
With the simplest slotted Aloha [1], for instance, each user
transmits with a certain probability whenever it has packets
in the buffer. It provides a simple solution for facilitating the
massive access of Machine-to-Machine (M2M) communica-
tions that has attracted great attention in recent years, and is
expected to play an instrumental role in next-generation data
communication networks [5], [6].

Despite the simplicity, it has long been observed that the
performance of slotted Aloha significantly deteriorates when
the number of nodes is large. Specifically, with each node
transmitting at a fixed probability, the number of access
requests quickly increases with the network size, leading to a
diminishing chance of success. Such performance degradation
is especially significant for the massive access of M2M com-
munications, where packets may be backlogged for an exces-
sively long time before being successfully transmitted [7].
How to optimize the delay performance of slotted Aloha is
therefore becoming an increasingly pressing issue, which is of
crucial importance for its successful support for delay-critical
services of M2M communications [8].

A. Delay Characterization of Buffered Slotted Aloha

As Fig. 1 illustrates, an n-node buffered slotted Aloha net-
work is essentially a multi-queue-single-server system where
each node has a buffer for accommodating incoming packets
and competes for access. The queueing delay of each packet
consists of two parts: 1) the waiting time, i.e., the time from
arriving till being the head-of-line (HOL) packet, and 2) the
service time, i.e., the time from being the HOL packet till
being successfully transmitted. The service time, also referred
to as the access delay, is crucially determined by nodes’
aggregate activities, channel conditions, and receiver models.
The queueing delay is further dependent on the arrival process.
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Early work focused on the access delay by ignoring the
queueing behavior of each node. A representative model
proposed in [9] is that each node has a one-packet-buffer that
can be either in idle or backlogged states. When the number of
nodes is large, the aggregate traffic, i.e., the number of newly
arrived and retransmitted packets, can be approximated as a
Poisson random variable, based on which the delay analysis
can be greatly simplified [9]–[14]. Another simplification is
to only consider the saturated condition [15], [16], where
each user always has a packet to transmit, i.e., with zero
idle probability. The mean access delay [9]–[12], [15], [17],
the probability mass function of access delay [13], [14],
[16], [18] and the probability generating function of access
delay [19] have been characterized in various scenarios.
Though well capturing the essence of contention from HOL
packets, the effect of the arrival rate of packets on the access
delay performance cannot be properly characterized based
on the one-packet-buffer model. Moreover, by excluding the
nodes’ queues in the model, the analysis cannot be extended
to further evaluate the queueing delay performance.

For a two-node buffered slotted Aloha network, the mean
queueing delay of packets with Bernoulli arrivals was first
characterized in [20] by deriving the generating function of
the stationary joint queue length distribution. Closed-form
expressions of the optimal transmission probability of nodes
for minimizing the mean queueing delay were further obtained
in [21], and [22] for a variant of Aloha with queue-aware
transmissions. With more than two nodes, nevertheless, it is
difficult to characterize the stationary joint queue length distri-
bution. The focus of the analysis was then shifted to the queue
length distribution of each individual node in the symmetric
case, i.e., all the nodes have identical arrival processes and
backoff parameters, and thus the same probability of suc-
cessful/failed transmissions [23]–[27]. The numerical methods
usually involve jointly solving multiple nonlinear equations.
Due to the lack of closed-form expressions and high compu-
tational complexity, little light has been shed to the optimal
tuning of system parameters for delay optimization.

In general, for performance analysis of a multi-queue-
single-server system, the main challenge lies in the charac-
terization of service process: With multiple nodes sharing the
same server, the service time distribution is determined by their
aggregate activities. As demonstrated in [28], the key to char-
acterization of service process includes 1) proper modeling of
HOL packets’ behavior, as only the HOL packets of nodes’
queues are involved in the service process, and 2) derivation
of steady-state probability of successful transmission of HOL
packets p, which is determined by the states of all the nodes.
In [28], by establishing the fixed-point equations of p under
unsaturated and saturated conditions, two network steady-state
points were obtained as explicit functions of system parame-
ters, based on which both the maximum network throughput
and minimum mean access delay were further derived.

B. Our Contributions

The analysis in [28] was based on a few ideal assumptions
that need to be further relaxed. First of all, the effect of

noise was ignored in [28], and thus the received signal-
to-noise ratio (SNR) of each packet was excluded from the
analytical framework. Secondly, the channel gain was regarded
as constant in [28], which is a good approximation for wired
networks but fails to capture the random fluctuations of
channel gains in wireless networks. Due to channel fading,
a packet cannot be correctly decoded even without concurrent
transmissions if the channel condition is too poor to support
its information encoding rate [29].

In this paper, the delay analysis is extended from constant
noiseless channels to fading channels, where the information
encoding rate and mean received SNR of each packet are key
parameters that have crucial impact on the delay performance.
Note that channel fading was also considered in our recent
work [30], [31], where the maximum sum rate, i.e., the
maximum total number of successfully decoded information
bits in unit time and unit bandwidth, of slotted Aloha was
characterized under various receiver models including the
capture model [30] and the successive interference cancella-
tion (SIC) [31]. A key assumption in [30], [31] is that the
network is saturated, i.e., each node always has packets in
the buffer. With the objective of maximizing the sum rate,
the saturated condition is of more interest, with which the
network throughput is pushed to the limit. When the delay per-
formance becomes the primary concern, however, it is crucial
to include the unsaturated case, where the delay performance
is significantly better than that in the saturated condition.

Specifically, we focus on the characterization and optimiza-
tion of access delay of an n-node buffered slotted Aloha
network where all the nodes transmit to a common receiver in
fading channels. We consider the symmetric case, that is, all
the nodes have identical input rates of packets, backoff para-
meters, and channel gain distribution. The network steady-state
points in both unsaturated and saturated conditions are derived
as explicit functions of key system parameters such as the
information encoding rate and transmission probability of each
node, based on which the minimum mean access delay and the
corresponding optimal transmission probability of each node
are further characterized.

The analysis shows that to achieve the minimum mean
access delay, the transmission probability of each node should
be reduced as the number of nodes increases. The correspond-
ing node throughput also declines, indicating that the data
rate of each node decreases if the information encoding rate
is fixed. In practice, however, the data rate is an important
performance metric in many M2M applications [32], where
a minimum data rate for each node should be guaranteed.
It is therefore of great practical importance to study how to
optimize the mean access delay while satisfying a certain data
rate requirement. For a given minimum required data rate of
each node, the rate-constrained minimum mean access delay
D∗

R is further obtained by jointly optimizing the transmission
probability and the information encoding rate. It is shown that
D∗

R sharply increases with the minimum required data rate R0

when R0 is large. The growth is particularly significant when
the traffic input rate is low, in which case the information
encoding rate of each node has to be sufficiently large to
satisfy the rate requirement.
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Fig. 2. With Aloha, each node transmits with a certain probability in each
time slot when it has packets in its buffer.

The analysis in this paper sheds important light on the
practical system design for facilitating the massive access of
M2M communications. For illustration, we take the LTE-M
system with smart grid applications as an example and evaluate
the rate-constrained minimum mean access delay of each
packet under different traffic scenarios with distinct quality-
of-service requirements. It is found that for delay-insensitive
light traffic scenarios, LTE-M can support a large number
of smart grid devices, e.g., more than 104 devices in a cell.
However, if the quality-of-service requirement becomes strict,
then the number of devices that LTE-M can support drastically
decreases even when the mean received SNR is large.

The remainder of this paper is organized as follows.
Section II presents the system model. The network steady-state
points in the unsaturated condition and the saturated condition
are characterized in Section III. In Section IV, the mean access
delay at both steady-state points is derived and minimized by
optimally tuning the transmission probability of each node.
In Section V, the rate-constrained minimum mean access delay
is characterized and the analysis is applied to an LTE-M
network with smart grid applications. Conclusions are sum-
marized in Section VI.

II. SYSTEM MODEL

Consider a buffered slotted Aloha network where n nodes
transmit to a single receiver over fading channels. Assume that
all the nodes are synchronized and can start a transmission
only at the beginning of a time slot. With Aloha, each
node transmits with a certain probability in each time slot
when it has packets in its buffer. Assume that each packet
transmission lasts for one time slot. As Fig. 2 shows, for a
given time, multiple nodes may have concurrent transmissions
and interfere with each other.

Assume that each node is equipped with a buffer of infinite
size to accommodate the arrival packets. For each node,
assume that the input rate, i.e., the long-term average number
of packets arrived in each time slot, is λ. As we mentioned
in Section I, the key to performance analysis of a buffered
slotted Aloha network is the characterization of its service
process, which is crucially determined by aggregate activities
of HOL packets, channel conditions and receiver design. In the
following, we will present details on the HOL-packet model,
channel model and receiver model.

A. HOL-Packet Model

For random-access networks, the performance closely
depends on the transmission probabilities of nodes, which may

Fig. 3. State transition diagram of an individual HOL packet in slotted Aloha
networks [30].

change with time. Among numerous designs, a prevalent one is
to adjust the transmission probability according to the number
of transmission failures that a HOL packet has experienced,
i.e., qi = q0 · Q(i), where qi is the transmission probability
after the i-th failure, and the backoff function Q(i) is an
arbitrary monotonic non-increasing function of the number of
transmission failures i. To prevent qi from being excessively
small, a cutoff phase K is usually imposed, exceeding which
the transmission probability does not vary with the number
of transmission failures, i.e., Q(i) is constant when i ≥ K .
A backoff scheme can then be characterized by the sequence
of transmission probabilities {qi}i=0,...,K .

In [30], the behavior of each HOL packet in a slotted Aloha
network was modeled as a discrete-time Markov process,
as shown in Fig. 3. Specifically, a fresh HOL packet is initially
in State T, and stays in State T if it is successfully transmitted.
Otherwise, it moves to State 0 if it is not transmitted, or State
1 if its transmission fails. For a State-i HOL packet, it moves
to State T if it is successfully transmitted. Otherwise, it stays
in State i if it is not transmitted, or State min(K, i + 1) if
its transmission fails. qi denotes the transmission probability
of a State-i HOL packet, and pt denotes the probability of
successful transmission of HOL packets at time slot t.

Note that the steady-state probability distribution of the
Markov chain in Fig. 3 exists only when p = lim

t→∞ pt exists.
It has been obtained in [30] that the steady-state probability
distribution is given by

πT = 1�K−1
i=0

(1−p)i

qi
+

(1−p)K

pqK

, (1)

and

π0 = 1−q0
q0

πT , πK = (1−p)K

pqK
πT , πi = (1−p)i

qi
πT , (2)

for i = 1, . . . , K − 1, if K ≥ 1. When the cutoff phase
K is 0, States 0 and K in Fig. 3 merge into one state,
i.e., State 0, and we have π0 = 1−pq0

pq0
πT . In this case,

the transmission probability of each node is q0 regardless of
how many transmission failures it has experienced. For each
node, πT is the service rate of its queue as the queue has a
successful output if and only if the HOL packet is in State T.

B. Channel Model

Let gk denote the channel gain from node k to the receiver,
which can be further written as gk = γk · hk, where hk is the
small-scale fading coefficient of node k that varies from time
slot to time slot and is modeled as a complex Gaussian random
variable with zero mean and unit variance. The large-scale
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fading coefficient γk characterizes the long-term channel effect
such as path loss and shadowing.

Due to the differences in large-scale fading effects, the mean
received signal-to-noise ratio (SNR) would vary from node
to node if they adopt the same transmission power. For
random-access networks, the near-far effect would cause
severe unfairness among nodes [12], [30], [33]–[35]. That is,
nodes with larger mean received power would have higher
throughput. To ensure fairness, in this paper, we follow the
assumption that uplink power control is performed to over-
come the effect of large-scale fading,1 i.e., the transmission
power of each node is properly adjusted according to the
large-scale fading coefficient γk such that each node has the
same mean received SNR, denoted by ρ. With Rayleigh fading,
the received SNR of each packet is exponentially distributed
with mean ρ.

C. Receiver Model

Throughout the paper, we assume that the receiver always
has perfect channel state information but the transmitters are
unaware of the instantaneous realizations of the small-scale
fading coefficients. As a result, each node independently
encodes its information at a constant rate Rin bit/s/Hz. Assume
that each codeword lasts for one time slot. That is, no joint
decoding is performed among nodes’ packets or with previ-
ously received packets.

As nodes do not coordinate their transmissions, more than
one packets could be received within one time slot. Whether
the packets can be successfully decoded or not crucially
depends on the receiver model. In this paper, we consider the
classical collision model, with which a packet transmission is
unsuccessful as long as there are concurrent transmissions.
When further taking the channel fading into consideration,
a packet transmission could be unsuccessful even without con-
current transmissions if its received SNR is too low to support
the encoding rate Rin. We assume that the codeword length is
sufficiently large such that a single packet can be successfully
decoded if its received SNR η satisfies log2(1 + η) ≥ Rin.2

Let

μ = 2Rin − 1 (3)

denote the SNR threshold. For each packet, its transmission is
successful if and only if there are no concurrent transmissions
and its received SNR η ≥ μ.

D. Access Delay, Throughput and Data Rate of Nodes

In this paper, we focus on the access delay performance.
For each packet, its access delay is defined as the time

1In practice, due to the slow-varying nature, the large-scale fading coeffi-
cients are usually available at the transmitter side through channel measure-
ment and feedback. Therefore, uplink power control has been widely adopted
in practical networks such as cellular systems.

2Note that with log2(1+η) ≥ Rin, by random coding the error probability
of a single packet (codeword) is exponentially reduced to zero as the codeword
length goes to infinity. In practice, powerful AWGN-capacity-achieving codes
can be adopted to efficiently suppress the error probability to a desirable
level with moderate codeword length [29]. When the codeword length is not
sufficiently large, nevertheless, (3) may be updated by further considering
the error probability requirement determined by the specific coding/decoding
schemes.

interval from the instant that it becomes a HOL packet to
its successful transmission. In Section IV, we will derive
the probability generating function of the access delay based
on the discrete-time Markov process of each HOL packet.
As it is crucially determined by the steady-state probability
of successful transmission of HOL packets p, in the following
section, we will first establish the fixed-point equations of p
to characterize the network steady-state points in unsaturated
and saturated conditions. The mean access delay at both
steady-state points will be derived and minimized by optimally
tuning the transmission probability of nodes in Section IV.

Similar to access delay, the number of successfully decoded
packets in each time slot is also a time-varying variable due
to the lack of coordination among nodes. For random-access
networks, the node throughput λout, which is defined as the
long-term average number of successfully decoded packets
per time slot per node, is another important performance
metric. Let Nt denote the total number of successfully decoded
packets in time slot t. The node throughput can then be
written as λout = 1

n limt→∞ 1
t

∑t
i=1 Ni. As each packet has

an information encoding rate of Rin bit/s/Hz, the long-term
average received information rate per node can be written as

Rout =
1
n

lim
t→∞

1
t

t∑
i=1

Ni · Rin = Rin · λout. (4)

We refer to Rout as the effective data rate.
Both the information encoding rate Rin and the node

throughput λout depend on the SNR threshold μ. Intuitively,
for larger μ, on average fewer packets can be successfully
decoded. Yet each packet carries more information owing to a
larger information encoding rate according to (3). Therefore,
the effective data rate Rout is crucially determined by the SNR
threshold μ. In practice, many applications have requirements
on the minimum effective data rate, i.e., a certain amount
of information has to be sent out within a time window.
In Section V, we will further study how to minimize the mean
access delay with a certain constraint on the effective data rate
by optimally tuning both the transmission probability of nodes
and the SNR threshold μ.

III. NETWORK STEADY-STATE POINTS

It has been shown in (1) that the service rate of each
node’s queue is determined by the steady-state probability
of successful transmission of HOL packets p. Depending on
whether the network is saturated, two fixed-point equations
of p will be established, and the corresponding solutions are
referred to as the steady-state points of the network.

Specifically, for each HOL packet, its transmission is suc-
cessful if and only if its received SNR η is above the threshold
μ, and all the other n − 1 nodes are either idle with empty
queues or busy but not requesting transmissions. For each
node, let pemp denote the probability of being idle with
an empty queue, and pnot denote the probability of being
busy with a HOL packet but not requesting transmission. The
probability of successful transmission of HOL packets p can
then be written as

p = Pr{η ≥ μ} · (pemp + (1 − pemp) · pnot)
n−1

. (5)
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Note that the second part of the right-hand side of (5) is
based on the assumption that events of node i being idle
or busy without requesting are independent, i = 1, . . . , n.
With random arrivals and random transmissions of nodes,
the independence assumption works well for Aloha networks
when the number of nodes n is large.

As the received SNR of each HOL packet is exponentially
distributed with mean ρ, we have

Pr{η ≥ μ} = exp
(
−μ

ρ

)
. (6)

According to the Markov chain of HOL packets shown
in Fig. 3, the probability that a HOL packet is not requesting
transmission can be written as

pnot = πT (1 − q0) +
K∑

i=0

πi(1 − qi). (7)

The probability of being idle with an empty queue, pemp,
depends on whether the network is saturated or not. In the
saturated case, each node’s queue is busy with probability 1.
Otherwise, the probability that a queue is busy is given by
λ/πT < 1, where λ and πT are the input rate and service rate
of each node’s queue, respectively. We then have

pemp =

{
1 − λ/πT λ < πT

0 λ ≥ πT .
(8)

A. Steady-State Point in the Unsaturated Condition pL

By combining (5)-(8), the steady-state probability of suc-
cessful transmission of HOL packets p in the unsaturated
condition can be written as

p =

(
1− λ

πT
+ λ

πT

(
πT (1−q0)+

K∑
i=0

πi(1−qi)

))n−1

exp
(
−μ

ρ

)
for largen≈ exp

(
− λ̂

p − μ
ρ

)
, (9)

which has two non-zero roots:

pL = exp
{
W0

(
−λ̂exp

(
μ
ρ

))
− μ

ρ

}
,

pS = exp
{
W−1

(
−λ̂exp

(
μ
ρ

))
− μ

ρ

}
, (10)

if and only if the aggregate input rate λ̂ = nλ is no larger
than λ̂p=pL

max = exp
{
−1 − μ

ρ

}
. W0(·) and W−1(·) are two

branches of the Lambert W function [36]. We have pL ≥ pS

and the equality holds when λ̂ = λ̂p=pL
max , at which pL =

pS = exp
{
−1 − μ

ρ

}
. By following the approximate trajectory

analysis proposed in [28], it can be found that only the larger
root pL is the steady-state point, which we refer to as the
desired steady-state point. According to (10), we can see that
pL is determined by the aggregate input rate λ̂, the SNR
threshold μ and the mean received SNR ρ.

Note that for an unsaturated node, its throughput λp=pL

out is
determined by its input rate λ. As a result, the corresponding
network throughput λ̂p=pL

out is equal to the aggregate input
rate λ̂, and we have

λ̂p=pL

out = λ̂ ≤ λ̂p=pL
max = exp

{
−1 − μ

ρ

}
. (11)

B. Steady-State Point in the Saturated Condition pA

As the input rate λ grows and exceeds the service rate,
each node’s queue is busy with probability 1, and the network
becomes saturated. By combining (5)-(8), the steady-state
probability of successful transmission of HOL packets p in
the saturated condition can be obtained as

p = exp
(
−μ

ρ

)
·
(
1 − πT

p

)n−1

for large n≈ exp
{
−nπT

p − μ
ρ

}

= exp

⎧⎨
⎩−μ

ρ − n�K−1
i=0

p(1−p)i

qi
+

(1−p)K

qK

⎫⎬
⎭ . (12)

It has been shown in [30] that when {qi}i=0,...,K is a
monotonic non-increasing sequence, the fixed-point equa-
tion (12) has a single non-zero root pA, which is referred to as
the undesired steady-state point. We can see that pA is closely
dependent on transmission probabilities of nodes {qi}i=0,...,K .
For instance, with K = 0, the undesired steady-state point pA

can be explicitly written as

pA = exp
{
−nq0 − μ

ρ

}
. (13)

Note that for a saturated node, its throughput λp=pA

out is equal
to the service rate πT (pA), which is below the input rate λ.
The corresponding network throughput is then given by

λ̂p=pA

out = n�K−1
i=0

(1−pA)i

qi
+

(1−pA)K

pAqK

≤ λ̂, (14)

according to (1). By combining (12) and (14), the network
throughput λ̂p=pA

out can further be written as

λ̂p=pA

out = −pA ln pA − pAμ
ρ

≤ λ̂p=pA
max = max

pA

λ̂p=pA

out = exp
{
−1 − μ

ρ

}
. (15)

We can conclude from (11) and (15) that the maximum
network throughput λ̂max = exp

{
−1 − μ

ρ

}
.3

C. When to Operate at the Desired Steady-State Point pL?

So far we have shown that a slotted Aloha network has two
steady-state points, i.e., the desired steady-state point pL and
the undesired steady-state point pA, at which the throughput
performance varies. Specifically, the network throughput is
determined by the aggregate input rate λ̂ while insensitive to
the transmission probabilities {qi}i=0,...,K when it operates
at the desired steady-state point pL. On the other hand,
the network throughput at the undesired steady-state point
pA is crucially dependent on the transmission probabilities
{qi}i=0,...,K .

In practice, it is important to know at which steady-state
point the network operates for given transmission probabilities
{qi}i=0,...,K . Given the backoff function Q(i), it is desirable
to characterize a region of initial transmission probability q0,
within which the network operates at the desired steady-state

3Note that with ρ → ∞, the above results reduce to those presented in [28]
with the ideal collision channel, where a packet transmission is successful as
long as there are no concurrent transmissions.
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Fig. 4. Steady-state probability of successful transmission of HOL packets p versus the initial transmission probability q0. n = 50. λ̂ = 0.35. (a) μ = 0.1,
ρ = 10 dB. (b) μ = 0.1, ρ = 0 dB. (c) μ = 5, ρ = 10 dB.

point pL. Otherwise, the network operates at the undesired
steady-state point pA. Such a region is in general difficult
to characterize due to the lack of the dynamic trajectory of
the probability pt of successful transmission of HOL packets
at time slot t. Therefore, similar to [28], we derive the
absolute-stable region SL = {q0|λ ≤ πT (pL), mint pt ≥ pS}.
With the initial transmission probability q0 ∈ SL, the network
is guaranteed to operate at the desired steady-state point
pL. If q0 /∈ SL, the network may shift to the undesired
steady-state point pA. With K = 0, an explicit expression
of the absolute-stable region SL of q0 can be obtained as

SL =
[
−1

nW0

(
−̂λexp

(
μ
ρ

))
,−1

nW−1

(
−λ̂exp

(
μ
ρ

))]
. (16)

Appendix A presents the detailed derivation of (16). (16)
indicates that the absolute-stable region SL shrinks as the
aggregate input rate λ̂ or the SNR threshold μ increases, or the
mean received SNR ρ decreases. SL is a non-empty set if and
only if λ̂ ≤ e−1 and μ ≤ μ0 = ρ

(
ln 1

λ̂
− 1
)

. The tightness of
the absolute-stable region SL derived in (16) will be validated
by simulation results presented below.

D. Simulation Results

In this section, simulation results are presented to verify
the preceding analysis. In this paper, event-driven simulations
are conducted and each simulation is carried out for 108 time
slots. The simulation setting is the same as the system model
characterized in Section II and thus we omit the details here
due to limited space. In simulations, we count the total number
of transmitted packets from all nodes and the total number of
successful packets. The steady-state probability of successful
transmission of HOL packets p is then obtained by calculating
the ratio of the number of successful packets to the total
number of transmitted packets.

Specifically, the analysis has revealed that if the initial
transmission probability q0 is selected from the absolute-stable
region SL, then the network operates at the desired steady-state
point pL. Otherwise, the network may shift to the undesired
steady-state point pA. With K = 0, expressions of pL, pA

and SL have been given in (10), (13) and (16), respectively.
As Fig. 4 illustrates, the absolute-stable region SL is crucially
determined by the SNR threshold μ and the mean received
SNR ρ. For instance, with μ = 0.1 and ρ = 10 dB, as shown

in Fig. 4a, the absolute-stable region SL = [0.014, 0.026] for
the aggregate input rate λ̂ = 0.35 and the number of nodes
n = 50. In this case, if the initial transmission probability
q0 ∈ SL, then the network would operate at the desired
steady-state point pL, which is independent of q0. Otherwise,
it shifts to the undesired steady-state point pA, which is
a decreasing function of q0. As the mean received SNR ρ
decreases, e.g., ρ = 0 dB, or the SNR threshold μ increases,
e.g., μ = 5, the absolute-stable region SL vanishes. In this
case, the network always operates at the undesired steady-state
point pA, as Fig. 4b–c show. Simulation results presented
in Fig. 4 well agree with the analysis.

IV. MEAN ACCESS DELAY AT TWO

STEADY-STATE POINTS

In this section, by deriving the probability generating func-
tion of access delay, we will characterize moments of access
delay and study how to properly select the initial transmission
probability q0 to minimize the mean access delay.

A. Moments of Access Delay

Denote Yi as the sojourn time of a HOL packet in State i
for i = 0, 1, . . . , K and Di as the time from the beginning
of State i to the service completion for i = T, 0, 1, . . . , K .
According to the Markov chain in Fig. 3, we have

DT =

⎧⎪⎨
⎪⎩

1 with probability q0 p

1 + D1 with probability q0(1 − p)
1 + D0 with probability 1 − q0,

(17)

and

Di =

{
Yi with probability p

Yi + Di+1 with probability 1 − p,
(18)

for i = 0, . . . , K − 1, and DK = YK . Note that DT is
the service time of HOL packets, which is also the access
delay. Let GDT (z) denote its probability generating function.
According to (17) and (18), we have⎧⎪⎨
⎪⎩
GDT (z) = q0pz+(1−q0)zGD0(z)+q0(1−p)zGD1(z),
GDi(z)=pGYi(z)+(1−p)GYi(z)GDi+1(z), i=0, . . . ,K−1,

GDK (z) = GYK (z),
(19)
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Fig. 5. Mean access delay E[DT ] (in unit of time slots) versus the initial transmission probability q0. n = 50. λ̂ = 0.35. (a) μ = 0.1, ρ = 10 dB.
(b) μ = 0.1, ρ = 0 dB. (c) μ = 5, ρ = 10 dB.

where the sojourn time of a HOL packet in State i, Yi, follows
the geometric distribution with the probability generating
function given by

GYi(z) =

{
qiz

1−z(1−qi)
for i = 0, . . . , K − 1

pqKz
1−z(1−pqK) for i = K.

(20)

It can be obtained from (19) that

GDT (z)

= q0pz+q0z
(
p

K−1∑
j=1

(1−p)j

j∏
i=1

GYi(z)

+(1−p)K
K∏

i=1

GYi(z)
)
+(1−q0)z

×
(
p

K−1∑
j=0

(1−p)j

j∏
i=0

GYi(z)

+(1−p)K
K∏

i=0

GYi(z)
)
. (21)

By combining (20) and (21), the first moment of the access
delay E[DT ], i.e., the mean access delay (in unit of time
slots), and the second moment of access delay E[D2

T ] can
be obtained as

E[DT ] = G′
DT

(1) =
K−1∑
i=0

(1−p)i

qi
+ (1−p)K

pqK
, (22)

E[D2
T ] = G′

DT
(1) + G′′

DT
(1)

=
K−1∑
i=0

(1−p)i

qi
+ (1−p)K

pqK
+

K−1∑
i=0

2(1−p)i

qi

(
1−qi

qi

+
K−i−1∑

j=1

(1−p)j

qi+j
+ (1−p)K−i

pqK

)
+ 2(1−p)K(1−pqK)

p2q2
K

.

(23)

We can observe from (22)-(23) that both E[DT ] and E[D2
T ]

are crucially determined by the transmission probabilities
{qi}i=0,...,K . In the following, we consider the case of K = 0.
The first moment of access delay E[DT ] and the second
moment of access delay E[D2

T ] in (22) and (23) can then
be simplified as

E[DT ] = 1
pq0

, and E[D2
T ] = 2−q0p

q2
0p2 . (24)

Note that with the probability generating function of access
delay, we can also obtain the mean queueing delay for a
given arrival process. With Bernoulli arrivals, for instance,
the mean queueing delay is determined by the first and second
moments of the access delay. Moreover, we can see from
(24) that E[D2

T ] = 2(E[DT ])2 − E[DT ], indicating that the
minimization of E[D2

T ] is equivalent to that of the mean access
delay E[DT ]. Therefore, in the following, we only focus on
the optimization of mean access delay.

B. Minimizing Mean Access Delay

The analysis in Section III has revealed that the network
has two steady-state points, i.e., the desired steady-state point
pL and the undesired steady-state point pA. By combin-
ing (10), (13) and (24), we can obtain the mean access
delay E[DT ]p=pL at the desired steady-state point pL and
E[DT ]p=pA at the undesired steady-state point pA as

E[DT ]p=pL = 1
q0

exp
{
−W0

(
−nλ exp

(
μ
ρ

))
+μ

ρ

}
,

E[DT ]p=pA = 1
q0

exp
{
nq0+μ

ρ

}
, (25)

respectively. We can see from (25) that both E[DT ]p=pL

and E[DT ]p=pA are determined by the number of nodes
n, the initial transmission probability q0, the SNR thresh-
old μ and the mean received SNR ρ. In this subsection,
we are interested in minimizing the mean access delay E[DT ]
by optimally tuning the initial transmission probability q0,
i.e., minq0 E[DT ].

Note that it has been shown in Section III-C that when
the initial transmission probability q0 ∈ SL, the network
operates at the desired steady-state point pL, with which we
can see from (25) that E[DT ]p=pL monotonically decreases
as q0 increases. As a result, to minimize the mean access
delay E[DT ]p=pL , q0 should be set to the upper-bound of the

absolute-stable region SL, i.e., − 1
nW−1

(
−λ̂ exp

(
μ
ρ

))
, with

which we can obtain from (25) that minq0∈SL E[DT ]p=pL =
W0

�
−nλ exp

�μ
ρ

��
λW−1

�
−nλ exp

�μ
ρ

�� . On the other hand, if the network operates

at the undesired stable point pA, then it can be easily derived
from (25) that minq0 /∈SL

E[DT ]p=pA = n exp
{

1 + μ
ρ

}
,

for achieving which q0 should be set to 1
n . Since the

absolute-stable region SL �= ∅ if and only if the aggregate
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input rate λ̂ ≤ e−1 and the SNR threshold μ ≤ μ0 =
ρ
(
ln 1

λ̂
− 1
)

, as shown in Section III-C, the minimum mean

access delay minq0 E[DT ] can be written as

min
q0

E[DT ]

=

⎧⎪⎨
⎪⎩

W0

�
−nλ exp

�μ
ρ

��
λW−1

�
−nλ exp

�μ
ρ

�� if μ ≤ μ0 and λ̂ ≤ e−1,

n exp
{

1 + μ
ρ

}
otherwise,

(26)

which is achieved when q0 is set to

q∗0 =

{
− 1

nW−1

(
−λ̂ exp

(
μ
ρ

))
if μ ≤ μ0 and λ̂ ≤ e−1,

1
n otherwise.

(27)

C. Simulation Results

In this subsection, simulation results are presented to verify
the above analysis. The simulation setting is the same as
the system model and each simulation is carried out for
108 time slots. In simulations, the mean access delay is
obtained by calculating the ratio of the sum of access delay
of all successfully transmitted packets to the total number of
successfully transmitted packets.

Specifically, the expressions of mean access delay at the
desired steady-state point pL and the undesired steady-state
point pA have been given in (25) and illustrated in Fig. 5.
As Fig. 5a shows, when the initial transmission probability q0

is chosen from the absolute stable region SL, the mean access
delay E[DT ]p=pL decreases as q0 increases. To minimize
E[DT ]p=pL , q0 should be set to the upper-bound of SL. On the
other hand, if the absolute-stable region SL does not exist, then
the network always operates at the undesired stable point pA.
In this case, as shown in Fig. 5b-c, to minimize the mean
access delay E[DT ]p=pA , the optimal initial transmission
probability q∗0 should be set as 1

n .
To see the performance gain of optimal tuning of q0, Fig. 6

illustrates how the mean access delay varies with the number
of nodes n with the initial transmission probability q0 = 0.01,
0.05 or q∗0 . It has been shown in (25) that with fixed q0,
the mean access delay E[DT ]p=pA exponentially increases
with n. In sharp contrast, the minimum mean access delay
linearly increases with the number of nodes n when n is large
according to (26). Fig. 6 corroborates that substantial gains
in the mean access delay can be achieved by optimally tuning
the initial transmission probability q0 especially in the massive
access scenario.

Note that for large n, even with q0 optimally tuned,
the throughput of each node λout = λ̂max

n = 1
n exp

{
−1 − μ

ρ

}
still decreases as the number of nodes n grows, indicating that
the effective data rate of each node Rout = Rin · λout would
also decline if the information encoding rate of each node
Rin is fixed. In practice, however, many applications may
have requirements on the minimum data rate of each node.
As we will demonstrate in the next section, to minimize the
mean access delay while taking the data rate requirement into
consideration, both the initial transmission probability q0 and

Fig. 6. Mean access delay E[DT ] (in unit of time slots) versus the number
of nodes n. λ = 0.01. μ = 0.1. ρ = 0 dB.

the information encoding rate of each node Rin need to be
optimally chosen.

V. RATE-CONSTRAINED MINIMUM MEAN ACCESS DELAY

In this section, we will study how to minimize the mean
access delay with a certain constraint of the effective data
rate of each node. Specifically, it has been shown in previ-
ous sections that both the effective data rate of each node
Rout = Rin · λout and the mean access delay E[DT ] are
determined by the SNR threshold μ and the initial transmission
probability q0. Let R0 denote the minimum required data
rate for each node. We are interested in characterizing the
rate-constrained minimum mean access delay:

D∗
R = min

μ>0,0<q0≤1
E[DT ]

s.t. Rin · λout ≥ R0. (28)

Note that if the minimum required data rate R0 is too
large, then the constraint Rin · λout ≥ R0 may not hold
for any q0 ∈ (0, 1] and μ ∈ (0, +∞), in which case the
optimization problem in (28) has no solution. Let us define
the maximum achievable rate of a slotted Aloha network as
C̄ = max

μ>0, 0<q0≤1
Rin · λ̂out. The data rate constraint cannot

be satisfied when R0 > C̄
n . The following lemma presents the

maximum achievable rate C̄.
Lemma 1: The maximum achievable rate of a slotted Aloha

network is given by

C̄ =

{
Cu 0 < λ̂ ≤ λ̂ρ,

Cs λ̂ > λ̂ρ,
(29)

where Cu is the maximum achievable rate in the unsaturated
case, which is given by

Cu = λ̂ log2(1 − ρ − ρ ln λ̂), (30)

and Cs is the maximum achievable rate in the saturated case,
which is given by

Cs = exp
(
−1 − eW0(ρ)−1

ρ

)
· log2(e

W0(ρ)), (31)

and λ̂ρ = exp
(
−1 − eW0(ρ)−1

ρ

)
.

Proof: See Appendix B.
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Theorem 1: If 0 ≤ R0 ≤ C̄
n , then the rate-constrained minimum mean access delay D∗

R is given by

D∗
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W0

�
��−nλ exp

�
�� 2

R0
λ −1
ρ

�
�	
�
�	

λW−1

�
��−nλ exp

�
�� 2

R0
λ −1
ρ

�
�	
�
�	

if 0 < λ ≤ e−1

n and R0 ≤ Cu

n ,

n exp
(
1 + μ1

ρ

)
if λ̂ρ

n < λ < e−1

n and Cu

n < R0 ≤ Cs

n , or λ ≥ e−1

n and R0 ≤ Cs

n ,

(32)

which is achieved when the SNR threshold μ is set to

μ∗
R =

⎧⎨
⎩ 2

R0
λ − 1 if 0 < λ ≤ e−1

n and R0 ≤ Cu

n ,

μ1 if λ̂ρ

n < λ < e−1

n and Cu

n < R0 ≤ Cs

n , or λ ≥ e−1

n and R0 ≤ Cs

n ,
(33)

and the initial transmission probability q0 is set to (34)

q∗0,R =

⎧⎪⎨
⎪⎩

− 1
nW−1

(
−nλ exp

(
2

R0
λ −1
ρ

))
if 0 < λ ≤ e−1

n and R0 ≤ Cu

n ,

1
n if λ̂ρ

n < λ < e−1

n and Cu

n < R0 ≤ Cs

n , or λ ≥ e−1

n and R0 ≤ Cs

n ,

(34)

where μ1 is the smaller root of the following equation

1
n exp

(
−1 − μ

ρ

)
log2(1 + μ) = R0. (35)

Otherwise, the optimization problem (28) has no feasible solution.
Proof: See Appendix C.

Theorem 1 shown at the top of this page presents the
rate-constrained minimum mean access delay D∗

R and the
corresponding optimal settings of the initial transmission prob-
ability q∗0,R and the SNR threshold μ∗

R for the minimum
required data rate R0 ≤ C̄

n . Note that the optimal information
encoding rate R∗

in can be obtained from (33) as R∗
in =

log2(1 + μ∗
R) according to (3).

A. Unsaturated Region SU , Saturated Region SS and
Infeasible Region SI

It is shown in the proof of Theorem 1 that the network
operates in the unsaturated condition when 0 < λ ≤ e−1

n and
0 < R0 ≤ Cu

n , in which the rate-constrained minimum mean
access delay D∗

R is determined by the input rate of each node
λ, the number of nodes n, the minimum required data rate for
each node R0 and the mean received SNR ρ. On the other
hand, when λ̂ρ

n < λ < e−1

n and Cu

n < R0 ≤ Cs

n , or λ ≥
e−1

n and 0 < R0 ≤ Cs

n , the network operates in the saturated
condition and the corresponding D∗

R is only determined by n,
R0 and ρ. We can define the following regions in terms of
(n, λ, R0, ρ):

• Unsaturated region SU =
{

(n, λ, R0, ρ)|0 < λ ≤
e−1

n and 0 < R0 ≤ Cu

n

}
, in which D∗

R is achieved when

the network is unsaturated.
• Saturated region SS =

{
(n, λ, R0, ρ)| λ̂ρ

n < λ <

e−1

n and Cu

n < R0 ≤ Cs

n , or λ ≥ e−1

n and 0 < R0 ≤
Cs

n

}
, in which D∗

R is achieved when the network is
saturated.

• Infeasible region SI = SU
⋃SS , in which the optimiza-

tion problem (28) has no solution.

A graphic illustration of the unsaturated region SU , saturated
region SS and infeasible region SI is presented in Fig. 7.
As Fig. 7a shows, the network operates at the unsaturated
region SU when both the input rate of each node λ and the
minimum required data rate for each node R0 are small. As λ
increases, the network would shift to the saturated region SS
and eventually falls into the infeasible region SI when R0 is
large, i.e., R0 > Cs

n .
Note that those three regions can also be interpreted in

terms of (ρ, λ) and (n, λ), as shown in Fig. 7b and Fig. 7c,
respectively. Specifically, ρu and ρs in Fig. 7b are the roots
of R0 = Cu

n and R0 = Cs

n for ρ, respectively, which can be
obtained as

ρu = 1−2R0/λ

1+ln λ̂
,

ρs ≈
(
W0

(
1

neR0 ln 2

))−1

exp
{(

W0

(
1

neR0 ln 2

))−1
}

.

(36)

Similarly, nu and ns in Fig. 7c are roots of R0 = Cu

n and
R0 = Cs

n for n, respectively, which can be obtained as

nu = 1
λ · exp

(
1
ρ − 1 − 2R0/λ

ρ

)
,

ns = 1
R0

· exp
(
−1 − eW0(ρ)−1

ρ

)
· log2(e

W0(ρ)). (37)

We can see from Fig. 7b and Fig. 7c that for a given
minimum required data rate for each node R0, the network
falls into the infeasible region SI when either the mean
received SNR ρ is too small or the number of nodes n is too
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Fig. 7. Unsaturated region SU , saturated region SS and infeasible region SI for given (a) ρ and n, (b) R0 and n, and (c) ρ and R0.

Fig. 8. Rate-constrained minimum mean access delay D∗
R (in unit of time slots) versus the minimum required data rate for each node R0 (in unit of

bit/s/Hz). n = 50. ρ = 0 dB. λ̂ρ = 0.1715. (a) λ̂ = 0.1. (b) λ̂ = 0.3. (c) λ̂ = 0.5.

large. Similar to Lemma 1 where the maximum achievable
rate C̄ is characterized as an upperbound of R0, we can also
characterize the minimum required mean received SNR ρ̄ as

ρ̄ =

{
ρu 0 < λ ≤ R0

log2(e
W0(ρs))

,

ρs λ > R0
log2(e

W0(ρs))
,

(38)

and the maximum allowable number of nodes n̄ as

n̄ =

{
nu 0 < λ ≤ R0

log2(e
W0(ρ))

,

ns λ > R0
log2(e

W0(ρ))
.

(39)

When the mean received SNR ρ < ρ̄ or the number of nodes
n > n̄, the data rate constraint cannot be satisfied.

B. Discussions

To take a closer look at Theorem 1, Fig. 8 and Fig. 9
illustrate how the rate-constrained minimum mean access
delay D∗

R varies with the minimum required data rate for
each node R0 and the mean received SNR ρ, respectively,
under various values of the aggregate input rate λ̂. For the
asymptotic cases, it can be easily obtained from Theorem 1
that

lim
R0→0

D∗
R =

lim
ρ→+∞D∗

R =

{
W0(−λ̂)

λW−1(−λ̂)
0 < λ̂ < e−1,

ne λ̂ ≥ e−1.
(40)

With a positive rate requirement R0 > 0 and finite mean
received SNR ρ < ∞, D∗

R would increase as R0 grows
or ρ declines. As shown in Fig. 8a and Fig. 9a, when the

aggregate input rate λ̂ = 0.1, we have λ̂ < λ̂ρ = 0.1715 for
ρ = 0 dB, and λ̂ < λ̂ρ|ρ=ρs = 0.174 for R0 = 0.003 bit/s/Hz.
Therefore, the network operates at the unsaturated region SU
with R0 < Cu

n or ρ > ρu. If the aggregate input rate
λ̂ increases to 0.3, then as shown in Fig. 8b and Fig. 9b,
the network would first operate at the unsaturated region SU ,
and then shifts to the saturated region SS when R0 exceeds
Cu

n or ρ drops below ρu. If the aggregate input rate λ̂ further
increases to 0.5 such that λ̂ > e−1, then as shown in Fig. 8c
and Fig. 9c, the network always operates at the saturated region
as long as R0 < Cs

n or ρ > ρs.
It is interesting to note from Fig. 8 and Fig. 9 that for high

rate requirement R0 or small mean received SNR ρ, a lower
traffic input rate may even lead to larger rate-constrained
minimum mean access delay D∗

R. Specifically, it can be seen
from Fig. 8a and Fig. 9a that with the aggregate input rate
λ̂ = 0.1, D∗

R sharply increases when R0 (or ρ) is close to
the limit Cu

n (or ρu). Intuitively, when the traffic input rate is
small, to satisfy the rate requirement, the information encoding
rate of each packet has to be sufficiently high, which leads to
low chances of successful transmission of HOL packets and
thus poor delay performance. It outperforms the heavy traffic
input rate case only when the data rate requirement is loose
(i.e., small R0) or the mean received SNR ρ is large.

Fig. 10a illustrates how the rate-constrained minimum mean
access delay D∗

R varies with the number of nodes n under
various values of the mean received SNR ρ. We can see
that the rate-constrained minimum mean access delay D∗

R

superlinearly increases with n for large n. It is in sharp
contrast to the unconstrained case, as shown in (26) and
Fig. 6, where the minimum mean access delay minq0 E[DT ]
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Fig. 9. Rate-constrained minimum mean access delay D∗
R (in unit of time slots) versus the mean received SNR ρ. n = 50. R0 = 0.003 bit/s/Hz. (a) λ̂ = 0.1.

(b) λ̂ = 0.3. (c) λ̂ = 0.5.

Fig. 10. (a) Rate-constrained minimum mean access delay D∗
R (in unit of time slots) versus the number of nodes n. (b) Optimal SNR threshold μ∗

R versus
the number of nodes n. R0 = 0.001 bit/s/Hz. λ = 0.001. ρ = 5 dB, 10 dB or 15 dB.

linearly increases with n for fixed SNR threshold μ (or
equivalently, information encoding rate Rin). Intuitively, as the
number of nodes n increases, the throughput of each node
λout declines. Therefore, to satisfy the required data rate
R0, each node should enlarge the information encoding rate
Rin. As Fig. 10b shows, the optimal SNR threshold μ∗

R

increases with the number of nodes n, leading to an increasing
information encoding rate and thus superlinearly increasing
rate-constrained minimum mean access delay D∗

R.

C. Insights for Massive Access of M2M Communications

The above analysis sheds important light on how to facilitate
massive access of M2M communications. For illustration, let
us take the example of LTE-M [38], which was developed by
the Third-Generation Partnership Project (3GPP) for address-
ing the fast-expanding market for low power wide area connec-
tivity. Similar to the legacy LTE networks, LTE-M also adopts
an Aloha-based random access procedure. Yet, different from
the legacy LTE networks, where the data packets are trans-
mitted after a connection is established in the random access
procedure, the early data transmission scheme is introduced in
LTE-M, where each device sends its packet within the random
access procedure [39].

In the following, we will apply our analysis to a single-cell
LTE-M system with smart grid applications. We consider
three representative traffic models: delay-insensitive light
traffic model, delay-insensitive heavy traffic model and
delay-sensitive traffic model, with traffic characteristics

summarized in Table I [32], [37]. LTE-M has the transmission
bandwidth of B = 1.08 MHz with the length of the random
access procedure typically 15 milliseconds [40]. For each
traffic model, we can calculate the input rate of each
device λ = σ

Reporting Period packet/slot, where σ = 15
milliseconds is the length of a time slot. The minimum
required data rate normalized by the system bandwidth B is
R0 = Payload Size

Reporting Period×B bit/s/Hz.
Let us first focus on delay-insensitive traffic models,

i.e., Traffic model 1 and Traffic model 2. Fig. 11a demonstrates
how the rate-constrained minimum mean access delay D∗

R (in
unit of seconds) varies with the number of devices n with the
mean received SNR ρ = 0 dB. We can see from Fig. 11a
that the maximum number of devices per cell that LTE-M can
support is quite large, i.e., 34090 for Traffic model 1 and 11360
for Traffic model 2, respectively, though the corresponding
minimum mean access delay D∗

R is also very high, i.e., D∗
R =

2934 seconds (48.9 minutes) for Traffic model 1 and D∗
R =

969 seconds (16.15 minutes) for Traffic model 2. Even with
a delay constraint of 900 seconds (15 minutes), LTE-M can
still support 18320 devices with Traffic model 1 and 11290
devices with Traffic model 2. It corroborates that LTE-M is
well suited for massive access of machine-type devices with
loose quality-of-service requirements.

As the delay constraint becomes stringent, however,
the number of devices that can be supported would drastically
decrease. We can see from Fig. 11b that for Traffic model 3,
only 435 devices can be supported for a delay constraint
of 1 second with ρ = 0 dB. Although the number of devices
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TABLE I

CHARACTERISTICS OF THREE TRAFFIC MODELS IN SMART GRID [32], [37]

Fig. 11. Rate-constrained minimum mean access delay D∗
R (in unit of seconds) versus the number of devices n. (a) Traffic model 1 and Traffic model 2.

ρ = 0 dB. (b) Traffic model 3. ρ = −10 dB, −5 dB, 0 dB or 10 dB.

can be enlarged by increasing the mean received SNR ρ,
the gain is quite marginal, i.e., 535 devices with ρ = 10 dB.
In this case, with sporadic transmissions from devices, i.e., the
traffic input rate λ = 4.1 × 10−6 packet/time slot, the net-
work operates at the unsaturated region with rate-constrained
minimum mean access delay D∗

R linearly increasing with the
number of devices n when n is small.

Note that despite the useful insights, there are caveats
when applying the analysis to practical scenarios. First of all,
the analysis focus on the optimal access delay performance,
to achieve which the initial transmission probability and the
information encoding rate of each device should be optimally
tuned according to the total number of devices n, the mean
received SNR ρ, the traffic input rate of each device λ and the
minimum required data rate for each device R0, as Theorem 1
shows. In practice, such an optimal tuning can be implemented
at the receiver side, since all the devices communicate with
a common receiver, e.g., Base Station (BS). The receiver
can keep a record of all registered devices and collect the
traffic characteristics. It then calculates the optimal initial
transmission probability and the information encoding rate and
broadcasts the configuration periodically for devices to update
their parameter setting accordingly.

Secondly, in this paper, we only consider the access delay
of each packet. For massive access of M2M communications,
due to sporadic transmissions (i.e., low input rate) of devices,
the waiting time in the buffer, i.e., the time for waiting-to-be-
HOL-packet, is usually quite small. It is therefore important
to optimize the access delay performance, which is the main
contributor, key indicator and the potential bottleneck of the

whole end-to-end delay performance. Nevertheless, for heavy
traffic load scenarios where the waiting time of each packet
cannot be neglected any more, the mean queueing delay
would become the primary concern, which can further be
characterized based on the probability generating function of
access delay derived in Section IV-A.

There are also a few key assumptions that may be relaxed
when extending the analysis to a variety of M2M communi-
cations systems:

1) Power Control: In this paper, power control is assumed
to be adopted to ensure that each node has the same long-term
performance, including throughput, mean access delay, and
effective data rate. In some low-cost M2M communications
systems where power control may not be supported, the mean
received power of packets would vary from device to device,
causing serious performance disparity. In that case, fairness
constraints need to be further considered when optimizing the
transmission probability and the information encoding rate of
each device.

2) Collision Model: With the collision model, at most
one packet can be successfully decoded in each time slot
regardless of the difference in received power of nodes.
In practice, however, that difference can be well utilized
to enhance the throughput performance. It has been shown
in our previous studies [31] that with the capture model,
the maximum network throughput of slotted Aloha in fading
channels can be significantly improved at the low SNR region,
though the gain in the maximum sum rate is marginal. For
M2M communications systems with low-power devices, it is
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important to further extend the delay analysis to incorporate
more advanced receivers.

3) SNR Threshold: In fading channels, even without con-
current transmissions, a packet (codeword) cannot be correctly
decoded if its received SNR is too low to support its infor-
mation encoding rate. In this paper, we set the SNR threshold
based on the channel capacity by assuming that the codeword
length is sufficiently large. For M2M communications systems
featured with short packets, however, the maximum achievable
rate could be significantly lower than the channel capacity due
to the small codeword length [8]. In that case, the relationship
between the SNR threshold and the information encoding rate
needs to be updated by further taking the codeword length into
account [41].

4) Infinite Retry Limit: In this paper, we assume that every
packet stays in the buffer until it is successfully transmit-
ted. In some M2M applications, however, packets would be
dropped after a few failed transmission attempts as the infor-
mation they carry becomes outdated. The maximum number
of allowable retransmissions is usually referred to as the retry
limit, which has significant effects on the access performance
of packets. It has been shown in [42] that for a CSMA network,
the minimum mean access delay can be substantially improved
by reducing the retry limit, but at the cost of throughput
performance. Such a tradeoff offers important insights to
practical system design, which should further be characterized
for slotted Aloha networks.

5) Symmetric Setting: In this paper, we consider the sym-
metric case where all the nodes have identical arrival processes
and backoff parameters. For M2M communications systems
where devices may have distinct traffic characteristics and
parameter settings, the proposed analytical framework can fur-
ther be extended by grouping devices with the same character-
istics into one group, with parameters differing from group to
group. For CSMA-based WiFi networks, a multi-group model
has been proposed to optimize the throughput performance
in various heterogeneous scenarios including diverse traffic
input rates [43], service differentiation requirements [44], and
multiple standards [45]. It would be interesting to further
generalize the delay analysis of slotted Aloha to heterogeneous
scenarios.

VI. CONCLUSION

This paper presents the access delay analysis of slotted
Aloha in fading channels. By characterizing closed-form
expressions of the network steady-state points in both unsat-
urated and saturated conditions, the minimum mean access
delay and the corresponding optimal transmission probability
of each node are obtained as explicit functions of key system
parameters including the number of nodes, the aggregate
traffic input rate, the mean received SNR and the informa-
tion encoding rate. The analysis shows that even with the
transmission probability of each node optimally tuned to
minimize the mean access delay, the effective data rate of
each node still diminishes as the number of nodes increases
if the information encoding rate of each node is fixed. There-
fore, to further take the data rate requirement into consid-
eration, the rate-constrained minimum mean access delay is

characterized by jointly optimizing the transmission probabil-
ity and information encoding rate of each node. Bounds on the
minimum required data rate, the mean received SNR of each
node and the total number of nodes are also derived, only
within which the data rate constraint can be satisfied. To illus-
trate the practical insights of the analysis for massive access of
M2M communications, a single-cell LTE-M network is further
considered with smart grid applications in various scenarios.
The rate-constrained minimum mean access delay is evaluated
for three representative traffic models, which indicates that
LTE-M is well suited for massive access of machine-type
devices with loose quality-of-service requirements.

APPENDIX A
DERIVATION OF (16)

It has been shown in [28] that two conditions should be
satisfied for the network to operate at pL:

Condition 1: The network should be unsaturated;
Condition 2: The probability of successful transmission of

HOL packets at time slot t, pt, should be no smaller than pS .
For Condition 1, the input rate of each queue should be

smaller than the service rate, i.e., λ < πT (pL), where the
service rate of each node’s queue, πT (pL), can be written as

πT (pL) = pLq0 with K = 0. With nλ =
(
− ln pL − μ

ρ

)
pL

according to (10), we can obtain the lower-bound of q0 as
− 1

nW0

(
−λ̂ exp

(
μ
ρ

))
.

Note that when q0 = − 1
nW0

(
−λ̂ exp

(
μ
ρ

))
, we have

λ = πT (pL) = πT (pA). In this case, the network
operates at the undesired-stable point pA, but we have
pA = exp

{
−W0

(
−λ̂ exp

(
μ
ρ

))
− μ

ρ

}
= pL. Therefore,

the lower-bound of q0 is included in the absolute-stable
region SL.

For Condition 2, the probability of successful transmission
of HOL packets at time slot t, pt, is determined by the number
of nodes requesting transmissions at time slot t, which varies
with time. Specifically, assume that for a given HOL packet,
among the n − 1 interfering nodes, there are ni nodes with
HOL packets at State i, i = 0, . . . , K . We have

pt = exp
{
−μ

ρ

}
·

K∏
i=0

(1−qi)ni

≥ exp
{
−μ

ρ

}
·(1−q0)

�K
i=0 ni

≥ exp
{
−μ

ρ

}
·(1−q0)n−1 n�1≈ exp

{
−nq0−μ

ρ

}
, (41)

where the first inequality is due to qi ≤ q0, for i = 0, . . . , K ,
and the second inequality is due to

∑K
i=0 ni ≤ n − 1.

We can then obtain the upper-bound of q0 from mint pt =
exp

{
−nq0 − μ

ρ

}
≥ pS as − 1

nW−1

(
−λ̂ exp

(
μ
ρ

))
.

APPENDIX B
PROOF OF LEMMA 1

Proof: The maximum achievable rate of the network C̄ =
max

μ>0, 0<q0≤1
Rin · λ̂out can be written as

C̄ = max
μ>0

(
log2(1 + μ) · max

0<q0≤1
λ̂out

)
, (42)
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according to (3). Section III has shown that the network
throughput λ̂out closely depends on whether the network is
saturated or not. In the following, let us consider two cases:

1) Aggregate input rate λ̂ > e−1: In this case, the network
is always saturated and operates at the undesired steady-state
point pA with the corresponding maximum network through-
put given in (15). Let Cs denote the maximum achievable rate
in the saturated case. By combining (15) and (42), we have

Cλ̂>e−1 =Cs =exp
(
−1− eW0(ρ)−1

ρ

)
· log2(e

W0(ρ)), (43)

which is achieved when the SNR threshold μ = μ∗ =
eW0(ρ) − 1.

2) Aggregate input rate λ̂ ≤ e−1: When the aggregate input
rate λ̂ ≤ e−1, whether the network is saturated or unsaturated
depends on the SNR threshold μ. If μ ≤ μ0 = ρ

(
ln 1

λ̂
− 1
)

,
then the network is unsaturated when the initial transmission
probability q0 ∈ SL. Otherwise, the network is saturated.

Let C1 = max
0<μ≤μ0,λ̂≤e−1

(
log2(1+μ)· max

0<q0≤1
λ̂out

)
and C2 =

max
μ≥μ0,λ̂≤e−1

(
log2(1+μ)· max

0<q0≤1
λ̂out

)
.

For C1, it has been shown in (11) that the network through-
put λ̂out = λ̂ when the network is unsaturated. Let Cu denote
the maximum achievable rate in the unsaturated case. We have

C1 = Cu = λ̂· max
0<μ≤μ0

log2(1+μ) = λ̂ log2(1−ρ−ρ ln λ̂),

(44)

achieved when the SNR threshold μ = μ0 = ρ
(
ln 1

λ̂
− 1
)

.

For C2, as the network is saturated when the SNR threshold
μ ≥ μ0, we have C2 = max

μ≥μ0
exp

(
−1−μ

ρ

)
· log2(1+μ)

according to (15). Let g(μ) = exp
(
−1−μ

ρ

)
· log2(1+μ)

denote the objective function of C2. It can be easily obtained
that g(μ) has one global maximum at μ∗ = eW0(ρ) − 1, with
g(μ∗) = Cs and g(μ0) = Cu. Moreover, for μ ∈ [μ0, +∞),
we have i)

1) if μ0 ≥ μ∗, then g(μ) is a monotonically decreasing
function of μ for μ ∈ [μ0, +∞). In this case, C2 is
maximized at Cu when μ = μ0, and

2) if μ0 < μ∗, then g(μ) is a monotonically increasing
function of μ for μ ∈ [μ0, μ

∗] and a monotonically
decreasing function of μ for μ ∈ (μ∗, +∞). In this case,
C2 is maximized at Cs when μ = μ∗.

For μ0 = ρ
(
ln 1

λ̂
− 1
)

and μ∗ = eW0(ρ) − 1, it can be

shown that μ0 ≥ μ∗ is equivalent to λ̂ ≤ λ̂ρ, where λ̂ρ =
exp

(
−1 − eW0(ρ)−1

ρ

)
. We can then obtain that C2 = Cu if

λ̂ ≤ λ̂ρ, achieved when μ = μ0, and C2 = Cs if λ̂ρ <
λ̂ ≤ e−1, achieved when μ = μ∗. Further note that C1 = Cu

according to (44) and Cs > Cu when λ̂ρ < λ̂ ≤ e−1, we can
obtain that

Cλ̂≤e−1 = max(C1, C2) =

{
Cu 0 < λ̂ ≤ λ̂ρ,

Cs λ̂ρ < λ̂ ≤ e−1.
(45)

Finally, (29) can be obtained by combining (43)
and (45).

APPENDIX C
PROOF OF THEOREM 1

Proof: It has been shown in Sections III and IV that
both the throughput of each node λout and the mean access
delay E[DT ] depend on whether the network is unsaturated
or saturated. When the initial transmission probability q0 is
selected from the absolute-stable region SL, which exists
when λ̂ ≤ e−1 and μ ≤ μ0 = ρ

(
ln 1

λ̂
− 1
)

, the network
is unsaturated and operates at the desired steady-state point
pL. Otherwise, the network is saturated and operates at the
undesired steady-state point pA. According to

λp=pA

out = πp=pA

T < λ = λp=pL

out < πp=pL

T , (46)

we have

E[DT ]p=pL < 1
λ < E[DT ]p=pA = 1

λ
p=pA
out

, (47)

because E[DT ] = 1
πT

by combining (1) and (22).
Let D∗,p=pL

R and D∗,p=pA

R denote the rate-constrained min-
imum mean access delay in the unsaturated and saturated
cases, respectively. We have D∗

R = min(D∗,p=pL

R , D∗,p=pA

R ).
By combining (3), (28), (46) and (47), they can be written as

D∗,p=pL

R = min
0<μ≤μ0

min
q0∈SL

E[DT ]p=pL

s.t. 0 < λ̂ ≤ e−1,

λ log2(1 + μ) ≥ R0, (48)

and

D∗,p=pA

R = min
μ>0

min
q0 /∈SL,0<q0≤1

E[DT ]p=pA

s.t. 1
E[DT ]p=pA

· log2(1 + μ) ≥ R0. (49)

In the following, we will consider D∗,p=pL

R and D∗,p=pA

R

separately.
For D∗,p=pL

R , it has been shown in Section IV-

B that min
q0∈SL

E[DT ]p=pL =
W0

�
−nλexp

�μ
ρ

��
λW−1

�
−nλ exp

�μ
ρ

�� ,

achieved when the initial transmission probability
q0 = − 1

nW−1

(
−nλ exp

(
μ
ρ

))
. Accordingly, (48) can

be rewritten as D∗,p=pL

R = min
2R0/λ−1≤μ≤μ0

W0

�
−nλ exp

�μ
ρ

��
λW−1

�
−nλ exp

�μ
ρ

��
for λ̂ ≤ e−1. Note that for the existence of D∗,p=pL

R , we need
μ0 ≥ 2R0/λ − 1, or equivalently, R0 ≤ Cu

n according to

μ ≤ μ0 = ρ
(
ln 1

λ̂
− 1
)

and (30). As
W0

�
−nλ exp

�μ
ρ

��
λW−1

�
−nλ exp

�μ
ρ

��
is a monotonic increasing function of the SNR threshold μ,
we have

D∗,p=pL

R =
W0



−nλ exp




2

R0
λ −1

�
/ρ

��

λW−1



−nλ exp




2

R0
λ −1

�
/ρ

�� , (50)

for 0 < λ̂ ≤ e−1 and 0 < R0 ≤ Cu

n , achieved when the SNR
threshold μ = 2R0/λ − 1.

For D∗,p=pA

R , note that if the network is saturated, then
the initial transmission probability q0 should not be selected
from the absolute-stable region SL. As SL exists only when
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Fig. 12. g(μ) versus μ. (a) μ0 ≤ 0 < μ1 ≤ μ∗. (b) 0 < μ0 < μ1 ≤ μ∗ . (c) 0 < μ1 ≤ μ0 ≤ μ∗ . (d) 0 < μ1 ≤ μ∗ ≤ μ0.

λ̂ ≤ e−1 and μ ≤ μ0, in the following, we will consider the
delay performance in two cases: 1) q0 /∈ SL, 0 < λ̂ ≤ e−1

and 0 < μ ≤ μ0, and 2) μ ≥ μ0.
1) q0 /∈ SL, 0 < λ̂ ≤ e−1 and 0 < μ ≤ μ0:

According to (46) and (47), we have min
q0∈SL

E[DT ]p=pL <

min
q0 /∈SL,0<q0≤1

E[DT ]p=pA and λ > 1
E[DT ]p=pA

. We can then

conclude from (48) and (49) that in this case, D∗,p=pL

R <
D∗,p=pA

R , and D∗
R is given in (50).

2) μ ≥ μ0: It has been shown in Section IV that
min

q0 /∈SL,0<q0≤1
E[DT ]p=pA = n exp

(
1 + μ

ρ

)
, achieved when

the initial transmission probability q0 = 1
n . Accordingly, (49)

can be rewritten as

D∗,p=pA

R = min
μ≥μ0

n exp
(
1 + μ

ρ

)
s.t. exp

(
−1 − μ

ρ

)
· log2(1 + μ) ≥ nR0.

(51)

Let g(μ) = exp
(
−1 − μ

ρ

)
· log2(1 + μ). It has been shown

in Appendix B that g(μ) has one global maximum at μ∗ =
eW0(ρ) − 1 with g(μ∗) = Cs and g(μ0) = Cu. It can be
seen from (51) that the objective function is a monotonically
increasing function of μ. Therefore, we aim to find the
minimum μ for satisfying the constraints of μ ≥ μ0 and
g(μ) ≥ nR0. As Fig. 12 illustrates, g(μ) = nR0 has two roots
when nR0 < Cs. Denote the smaller root as μ1 and the larger
root as μ2. Apparently, the constraint g(μ) ≥ nR0 cannot be
satisfied when μ0 > μ2. For μ0 ≤ μ2, let us consider the
following cases:

i) μ0 ≤ 0 < μ1 and 0 < μ0 < μ1: As Fig. 12a and
Fig. 12b illustrate, in both cases, the minimum μ for satisfying
g(μ) ≥ nR0 and μ ≥ μ0 is μ1. We then have D∗,p=pA

R =
n exp

(
1 + μ1

ρ

)
. Further note that μ0 = ρ

(
ln 1

λ̂
− 1
)
≤ 0 is

equivalent to λ̂ ≥ e−1, and μ0 < μ∗ = eW0(ρ)−1 is equivalent
to λ̂ > λ̂ρ = exp

(
−1 − eW0(ρ)−1

ρ

)
. We can then conclude that

D∗,p=pA

R = n exp
(
1 + μ1

ρ

)
, for λ̂ ≥ e−1 and 0 < R0 ≤

Cs

n , or λ̂ρ < λ̂ < e−1 and Cu

n < R0 ≤ Cs

n . As D∗,p=pL

R

does not exist in the above cases, we have

D∗
R = D∗,p=pA

R = n exp
(
1 + μ1

ρ

)
, (52)

for λ̂ ≥ e−1 and 0 < R0 ≤ Cs

n , or λ̂ρ < λ̂ < e−1 and Cu

n <
R0 ≤ Cs

n , achieved when μ = μ1.
ii) 0 < μ1 ≤ μ0: As Fig. 12c and Fig. 12d illustrate, in this

case, the minimum μ for satisfying g(μ) ≥ nR0 and μ ≥ μ0

is μ0. We then have D∗,p=pA

R = n exp
(
1 + μ0

ρ

)
= 1

λ . Further

note that μ0 > 0 is equivalent to λ̂ < e−1. We can then
conclude that D∗,p=pA

R = 1
λ , for 0 < λ̂ < e−1 and 0 <

R0 ≤ Cu

n . By comparing with (50) and noting that W0(x)
W−1(x) < 1

for x ∈ (−e−1, 0), we have D∗,p=pL

R < 1
λ = D∗,p=pA

R in this
case, and D∗

R is given in (50).
Finally, (32) and (33) can be obtained by combining (50)

and (52). (34) can be obtained by combining (27) and (33).
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