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Abstract—In the IEEE 802.11ax Wireless Local Area Net-
works (WLANs), Orthogonal Frequency Division Multiple Access
(OFDMA) has been applied to enable the high-throughput
WLAN amendment. However, with the growth of the number of
devices, it is difficult for the Access Point (AP) to schedule uplink
transmissions, which calls for an efficient access mechanism in
the OFDMA uplink system. Based on Multi-Agent Proximal
Policy Optimization (MAPPO), we propose a Mean-Field Multi-
Agent Proximal Policy Optimization (MFMAPPO) algorithm to
improve the throughput and guarantee the fairness. Motivated
by the Mean-Field games (MFGs) theory, a novel global state
and action design are proposed to ensure the convergence of
MFMAPPO in the massive access scenario. The Multi-Critic
Single-Policy (MCSP) architecture is deployed in the proposed
MFMAPPO so that each agent can learn the optimal channel ac-
cess strategy to improve the throughput while satisfying fairness
requirement. Extensive simulation experiments are performed to
show that the MFMAPPO algorithm 1) has low computational
complexity that increases linearly with respect to the number
of stations 2) achieves nearly optimal throughput and fairness
performance in the massive access scenario, 3) can adapt to
various diverse and dynamic traffic conditions without retraining,
as well as the traffic condition different from training traffic.

Index Terms—Multiple Access, Multi-Agent Reinforcement
Learning, Multi-objective Reinforcement Learning, Mean-Field
Reinforcement Learning

I. INTRODUCTION

With the development of IEEE 802.11 standard, we have
witnessed the global roll-out of Wi-Fi, where the network
throughput requirement increases rapidly. Consequently, High
Efficiency WLAN (HEW) was proposed in the amendment
named IEEE 802.11ax [1], [2] to meet the increasing through-
put requirement in dense scenarios, i.e., the stadium or shop-
ping mall with a large number of audiences. In these scenarios,
massive stations (STAs) are required to access limited channel
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resources, and each has high traffic dynamics with personal-
ized service requirement.

In HEW IEEE 802.11ax [1], orthogonal frequency divi-
sion multiple access (OFDMA) is a critical multiple access
technique to enhance the uplink (UL) multi-user (MU) trans-
mission efficiency. With the rapid growth of the number
of devices, it is hard for the access point (AP) to acquire
buffer status of all devices. Therefore, the Uplink OFDMA
Random Access (UORA) has been proposed to allow devices
with unknown buffer status to participate in the UL MU
transmission via OFDMA [2]. As a random multiple access
technique, the UORA enables each STA to randomly access
a resource unit (RU) for the UL transmission. However, due
to the randomness of accessing RUs, the collision probability
is difficult to be reduced, resulting in low access efficiency as
1/e ≈ 37% for each RU even with the optimal parameters [3].

Recently, the Reinforcement Learning (RL) technique has
achieved tremendous success in the wireless networks. By
finding solutions through the experiences from iterations, RL-
based algorithms can well adapt to the dynamic traffic environ-
ment. Regarding STAs as agents, the multiple access problem
can naturally be formulated as a multi-agent problem. Con-
sequently, the Multi-Agent Reinforcement Learning (MARL)
technique has been widely adopted in recent literature, which
allows devices to learn access strategies cooperatively to avoid
collisions between devices and improve the throughput while
guaranteeing fairness [4]–[17].

Motivated by this, we aim to propose a MARL based
multiple access algorithm to replace the inefficient UORA
mechanism. Due to the non-stationary issue introduced by
the multi-agent environment, it is hard for each agent to
learn an independent efficient access strategy based on its
own partial observation. Therefore, it is a common way to
improve the MARL performance by centralized training that
jointly uses the states and actions of other agents. However,
with the growth of the agent scale, the size of state space
when using this approach increases rapidly, resulting in high
computational complexity for MARL models in the massive
access scenario. Therefore, most MARL algorithms consider
only a few agents and become difficult to solve in large-scale
multi-agent scenarios [8]–[13].

To address this issue, we introduce an action mechanism,
with which each agent independently determines its access
policy periodically every certain time slots instead of each
time slot. Such action mechanism expands the action space to
avoid excessive collisions and converging to unexpected access
strategies. Based on this action mechanism, a novel global
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state is then designed to reduce the size of the global state.
Motivated by the Mean-Field Evolutionary (MFE) approach
[18], a global state is introduced to consider the “average”
action of other agents rather than the individual action of each
agent. Such design simplifies the complex interaction among
massive agents, and ensures that the proposed algorithm can
be applied in the massive access scenario.

In face of personalized service requirements, there always
exists tradeoff between throughput and fairness in multiple
access scenarios [19]. In particular, high throughput requires
STAs with good transmission conditions to occupy channel
resources, which jeopardizes transmissions of other STAs
and thus the fairness performance. Concerning about both
the throughput and the fairness, we aim to maximize the
throughput while guaranteeing the fairness among agents.
Toward this goal, we apply the Multi-objective Reinforcement
Learning (MORL) technique through the Multi-Critic Single
Policy (MCSP) architecture.

A. Contributions and Main Results

In this paper, we propose a multi-agent distributed access
algorithm based on Multi-Agent Proximal Policy Optimization
(MAPPO) [20] named Mean-Field MAPPO (MFMAPPO),
aiming at maximizing the throughput while guaranteeing the
fairness among STAs in the OFDMA uplink network. Our
contributions and main results are highlighted as follows:
• We design a new action mechanism for the proposed

MFMAPPO to avoid converging to unexpected local
optimum. In this design, we expand the action space over
time to tackle the convergence problem caused by the
high collision probability with the increase of the number
of STAs. Moreover, based on such expanded action space,
a novel global state motivated by the MFE is introduced
to reduce the input size of global states. By considering
the average behavior of other agents instead of their
individual behaviors, the computational complexity is
greatly reduced, increasing linearly only with the number
of agents.

• We further extend the MCSP framework in the MARL
scenario to improve both the throughput and the fairness
performance of the MFMAPPO [21]. Utilizing the ex-
tended MCSP, the MFMAPPO can evaluate value func-
tions of different objectives by independent global states
and critic networks, which enables agents to learn better
cooperation strategies. Moreover, we adopt the Pop-Art
layer in the extended MCSP to address the issue of
unstable advantage function in multi-objective problem.

• We evaluate the performance of the proposed MFMAPPO
algorithm in dynamic and diverse traffic scenarios where
the traffic changes dynamically over time and varies
across STAs. In both scenarios, the proposed MFMAPPO
algorithm can adapt to the traffic variation over time
without retraining and achieves nearly optimal perfor-
mance compared with hybrid UORA (H-UORA) as well
as other baseline methods. Moreover, the MFMAPPO has
generalization capacity to adapt to traffic conditions that
are different from those in training traffic.

B. Related work

The concept of UORA was first proposed in the IEEE
802.11ax to enable random access in the UL MU transmission
via OFDMA. In UORA, each STA is informed with the
information of RUs via a Trigger Frame for Random access
(TF-R). Using the information of TF-R, each STA engages
in an OFDMA backoff (OBO) process to compete for access
the RU. When traffic loads heavily, UORA is shown to have
a maximum normalized throughput similar to that of slotted
Aloha due to high probability of collisions [3]. To improve
the access efficiency, carrier sensing technique was adopted.
In particular, a novel trigger based access mechanism called
H-UORA was proposed to reduce the collision possibility by
adopting carrier sensing [22]. Instead of attempting to avoid
collisions, there are some schemes aiming at resolving colli-
sions, for instance, by using Successive Inference Cancellation
(SIC) [23], [24]. Although collision-resolution schemes can
significantly improve the access efficiency, they usually come
with a high computational complexity for the receiver, and
signalling overhead may incur due to the requirement of the
channel station information.

Recently, RL-based multiple access algorithms have gained
great research interests. In [25], a Deep Q-Network (DQN)
algorithm was introduced to optimize the contention window
size for networks based on CSMA with Collision Avoid-
ance (CSMA/CA). A deep Q-Learning based algorithm was
proposed to control the transmission rates of nodes by ad-
justing the modulation and coding scheme (MCS) levels in
CSMA/CA-based wireless networks [26]. For efficient coexis-
tence of LTE-LAA and WiFi, a RL-enabled Listen-Before-Talk
(ReLBT) mechanism aimed to optimize the channel access
parameters for LBT in [27]. Instead of designing on the top
of current protocols, some studies proposed to replace the
inefficient channel access mechanism with RL-based ones
[10], [14]. In particular, to address a dynamic spectrum sharing
problem, a RL-based algorithm was developed in [14] to select
channels and demonstrated a better performance than existing
access methods. In [10], the DQN was applied to address the
multiple access problem in a time-varying environment.

While the aforementioned studies focusing on the Single
Agent Reinforcement Learning (SARL) problems, researchers
have also adopted the MARL technique in the multiple access
scenario to improve various performance metrics through
better coordination among agents [4]–[17]. The MARL algo-
rithms can be roughly divided into two categories, including
the policy-based and the value-based. For the policy-based
MARL, the Multi Agent Deep Deterministic Policy Gradient
(MADDPG) and Multi-Agent Deep Stochastic Policy Gradient
(MADPSG) algorithms were applied in dynamic spectrum
access problem to maximize the average sum event rate, which
outperforms the standard multiple access protocols [4]. In a
similar vein, a deep actor-critic MARL-based framework was
proposed for the dynamic multi-channel access problem [8].

For the value-based MARL, the DQN based Deep Q-
learning Spectrum Access (DQSA) was applied to address
the dynamic spectrum access problem for network utility
maximization in multi-channel wireless networks [7]. Similar

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3355276

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 31,2024 at 08:57:38 UTC from IEEE Xplore.  Restrictions apply. 



3

to DQSA, a multiple access scheme based on QMIX was pro-
posed and shown to outperform the Distributed Channel Ac-
cess (DCA) problem, which outperforms the CSMA/CA and
shows robustness in the dynamic network environment [11].
The deep Q-learning was adopted to maximize the through-
put in heterogeneous networks and homogeneous networks
respectively in [15] and [17]. Moreover, value-based MARL
algorithms have been applied in dynamic multi-channel access
scenarios to learn the unknown wireless environment and the
corresponding channel access strategies in [9]–[13], [16].

In the massive access scenario, MARL-based approaches
face several challenges: 1) with the growth of access scale, the
computational complexity of MARL models increases rapidly,
especially when each agent utilizes the information of other
agents [4], [11], [28]–[30]; 2) due to the conflict between
access efficiency and fairness issue, it is difficult to guarantee
the fairness among STAs while improving the throughput
[31]; 3) when each agent needs to access at every slot, the
collision probability increases with respect to the number
of agents during the exploration of the state-action space.
As such, the RL model would converge to unexpected local
optimum, which renders it difficult to apply in the massive
access scenario [8]–[13]. In the proposed MFMAPPO, we
introduce several approaches to address the aforementioned
issues.

First, by considering the averaged behaviour of other agents
rather than their individual behaviors, the MFE approach can
reduce the complexity of the MARL algorithm, which can be
applied to the scenario with large number of agents [18], [32].
However, the MFE approach requires a continuous objective
function and continuous gradient matrix to update the distri-
bution of strategies, which cannot be applied in the considered
multiple access problem with discrete utility, i.e., the number
of successful transmissions. In this paper, we design a novel
global state motivated by the MFE approach in the proposed
MFMAPPO algorithm to reduce the computational complexity
and improve convergence performance in the massive access
scenario.

Second, to address the multi-objective optimization prob-
lem concerning about both the throughput and the fairness,
we do not simply summate rewards of different objectives
into a joint reward as that in Single-Object Reinforcement
Learning (SORL), since such approach will flatten the gradient
of critic networks during training, resulting in slower and
unstable convergence [31]. Instead, we apply the MCSP to
evaluate state values of multiple objectives through different
critic networks, which improves the performance of RL in
multi-objective optimization problems [21]. Yet, the vanilla
MCSP is for the SARL scenario, which is not suitable in
the considered multiple access scenario. In the proposed
MFMAPPO, we extend the vanilla MCSP into the MARL
scenario, and improve its evaluation ability and convergence
performance. In particular, we introduce two global states for
different objectives to not only provide global information
but also further reduce the computational complexity. Then,
we also propose separate network architecture instead of the
shared network in vanilla MCSP to address the unequal length
between global states and local state, which further improves

the evaluation ability.
Finally, to deal with the problem of sharing few channel

resources among massive STAs, we take the selection of
time slot as a part of the action design, in which STAs
decide the transmission strategy periodically every certain time
slots. Germane to our work, a branching dueling Q-network
with such action mechanism was adopted in [16], where the
dueling Q-network deterministically selects a set of channel
access policies for several consecutive time slots between each
decision time to tackle the multi-channel access problem in
dynamic network environment. Moreover, a vector Q-learning
scheme was proposed to reduce the computational complexity
from an exponential increment to a linear one with both the
number of STAs and the number of channels [16]. In the
proposed MFMAPPO, the computational complexity is further
reduced to O(N) where N denotes the number of STAs.

C. Outline

The remainder of this paper is organized as follows: Section
II introduces the Proximal Policy Optimization (PPO) and
the CTDE architecture. Section III presents the system model
and the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) model formulation in the OFDMA
uplink random access scenario. In Section IV, the proposed
MFMAPPO algorithm is elaborated. Simulation results are
presented in Section V and the conclusion and future of work
are provided in Section VI.

II. REINFORCEMENT LEARNING PRELIMINARIES

A. RL: A PPO-Based Approach

In the SARL, PPO is one of the most popular RL algorithms.
In the PPO, there are several main techniques applied in
the loss formula to improve the convergence performance
[33]. First, the importance sampling is applied to improve
the efficiency and stability of the policy gradient estimation.
In on-policy RL algorithms, the policy is updated based on
the data collected by the same policy. However, due to the
stochastic nature of the environment, the same policy can
generate different trajectories, leading to a high variance in
the policy gradient estimation. In importance sampling, instead
of directly updating the old policy πθold (at | st), a new policy
πθ (at | st) will be generated for the update. The ratio between
the new policy and old policy r(θ) is defined as

r(θ) ,
πθ (at | st)
πθold (at | st)

. (1)

Then, the loss can be re-weighted to reduce the variance of
policy gradient estimation by applying the ratio r(θ) to the
advantage function At, which is given by

L(θ) = Êt [r(θ)At] +

[
σ
1

B

B∑
t=1

S [πθ (at | st)]

]
, (2)

where S [πθ (at | st)] is defined as the entropy of the new
policy πθ (at | st) and σ denotes the entropy coefficient. The
advantage function At represents the advantages of each action
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compared with the current policy φ in a specific state st, which
is given by

At =

∞∑
l=1

(γλ)l (rt + γVφ (st)− Vφ (st+l)) (3)

When r(θ)� 1, nevertheless, the loss becomes excessively
large, which leads to unstable convergence. Therefore, the
clipped loss formula is applied in the PPO to address this
issue by constraining the scale of loss, i.e.,

L(θ) =Êt [min (rt(θ)At, clip (rt(θ), 1− ε, 1 + ε)At)]

+

[
σ
1

B

B∑
t=1

S [πθ (at | st)]

]
(4)

where clip is used to circumstance the ratio r(θ) within the
bounds of [1−ε, 1+ε]. If At > 0, then the maximum value of
clip (rt(θ), 1− ε, 1 + ε)At is given by (1 + ε)At, otherwise,
it is given by (1− ε)At.

In this work, we adopt the PPO-based approach to address
the multiple access problem. The PPO-based approach can
offer better exploration capacity through the clipped surrogate
loss and higher learning efficiency through importance sam-
pling. Moreover, PPO can also be extended to MAPPO by
introducing a global state to gather information of the envi-
ronment and other agents, which enables better cooperation
among agents. Compared to other policy-based approaches,
e.g., MADDPG, with continuous action space, the PPO-based
approach with discrete action space is more suitable for the
multiple access problem.

B. CTDE

In the MARL algorithm, similar to SARL, each agent
interacts with the environment and other agents to maximize
its own cumulative rewards based on its local observation.
With respect to SARL, the environment in MARL becomes
non-stationary and more complex due to the unfixed policy of
each agent during training, which makes the MARL problem
difficult to solve [34].

The framework of MARL-based algorithms can be roughly
divided into two categories, including centralized MARL and
decentralized MARL. Considering a cooperative environment,
the advantage of the centralized MARL is that it can gather the
information of all agents and assign the reward to each agent,
which makes MARL models easier to converge and avoids the
problem of designing individual reward for each agent. In the
centralized MARL, nevertheless, agents needs the information
of other agents to make actions, which makes it difficult
to be deployed in a distributed manner. For decentralized
MARL, though each agent can make action independently,
the information of part of environment and other agents is
unknown to the agent, which makes it hard to converge to the
global optimum.

The CTDE architecture has been proposed to take ad-
vantages of the aforementioned frameworks. In CTDE, the
training of the model is done centralized by using the training
data collected from virtual environments (through simulations
in this work). The centralized training process enables each

agent to share information, facilitating the acquisition of a
better coordination strategy. Once the model is trained, it
is then deployed to each agents for execution. Most of the
mainstream MARL methods have adopted the CTDE architec-
ture, e.g., MADDPG, QMIX and Counterfactual Multi-Agent
Policy Gradients (COMA) [28]–[30]. Recently, the MAPPO
algorithm has been proposed to deal with MARL problems,
which is derived from the PPO algorithm [20]. Through the
aforementioned CTDE architecture, each MAPPO agent i has
its own actor network and critic network to evaluate its state
value V i based on the global information of all agents, and
output its own action based on local observation.

III. SYSTEM MODEL AND DEC-POMDP FORMULATION

A. System Model

As Fig. 1 illustrates, we consider an OFDMA uplink sce-
nario where N STAs transmit packets to an associated AP in
a time-slotted 802.11ax network through M available RUs.
Each STA has a buffer to store incoming packets, and each
packet is served in a First Come First Serve (FCFS) manner.

RL Agent 1

RL Agent 2

RL Agent 3
RL Agent N

Access Point

Agent nodes

Uplink

Downlink

Fig. 1. Multiple STAs share several RUs and transmit in a distributed manner.

TF-R

STA1  OBO= 3

STA2  OBO= 2

STA3  OBO= 4

STA1  OBO= 0

STA2  OBO=-1

STA3  OBO= 1

RU 2 RU 1 ← STA 2

RU 2 ← STA 1

PPDU

BA

RU 3

SIFS

RU 1

SIFS

(a)

T time slots

RUs

time slot

BA

SIFSPPDU

RU 2

…

RU 1

RU 

SIFS

periodically access interval

TF-R

(b)

Fig. 2. (a) 802.11ax UL OFDMA-based random access. (b) access procedure
based on the proposed MFMAPPO.
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In UORA, the AP allows STAs to randomly access the RUs
as shown in Fig. 2a. The OBO mechanism is used to reduce
the collision probability, which works as follows: the AP first
broadcasts the TF-R to each STA, which declares the start
of the access and includes information about RUs. Each STA
generates a random OBO counter independently, which is then
decreased by the number of RUs indicated by the received
TF-R. When the OBO counter decreases to a non-positive
value, the STA is allowed to transmit a Presentation Protocol
Data Unit (PPDU) on one RU after a Short InterFrame Space
(SIFS) time. After the transmission, the AP broadcasts a Block
Acknowledgement (BA) to each STA to notify them of the
transmission results.

However, even with the optimal parameters of OBO mech-
anism, the maximum access efficiency of UORA is equal to
that of slotted Aloha, i.e., 1/e ≈ 37%. In this work, our goal is
to design a distributed multiple access policy based on MARL
that achieves better throughput performance and guarantees the
fairness among STAs. The access procedure of the proposed
MFMAPPO is illustrated in Fig. 2b. In particular, the TF-R
is broadcast from AP to each STA to notify the value of T
and the informations of M RUs, where T is the number of
time slots of each periodical access interval. Each STA then
selects which RU and time slot to access at the beginning of
periodical access interval. Compared to UORA with which
STAs can only choose which RU to access, in the proposed
MFMAPPO, each STA needs to further select the time slot to
access in each periodical access interval.

B. Dec-PODMP Model Formulation

The OFDMA random access problem can be regarded
as the MARL problem where each STA interacts with the
environment based on local observation. The MARL problem
can be formulated as a Dec-POMDP model, which is given
by

〈I,S,A,P,R,Z,O, N, γ〉, (5)

where I = {1, 2, . . . , N} is the set comprises all N agents,
and s ∈ S denotes the state of the environment. At each time
step t, agent i ∈ I choose an action ait ∈ A independently.
The environment will change to the next state st+1 according
to the transition matrix P : S × AN× S 7→ [0, 1] by joint
action a ∈ An. Then, each agent will receive a reward based
on the reward function: R : S × AN 7→ RN . Considering a
partially observable scenario, each agent has a different local
observation z ∈ Z , where the observation z is decided by
observation function O : S × I 7→ Z . In the following, the
detailed description of the state, action, reward and global state
in the MFMAPPO will be presented.

B.1 Action
As Fig. 2b illustrates, instead of deciding the access action at

every time slot, we let each agent, i.e., agent i ∈ {1, 2, . . . , N}
decides its action aik at the beginning of periodical access
interval k. The number of time slots in each periodical
access interval is given by T = b N2M c. By implementing this
mechanism, we expand the action space, which enables agents
to thoroughly explore the state-action space even when the
number of RUs is significantly less than the number of STAs.

Furthermore, this mechanism prevents frequent collisions be-
tween STAs and convergence to an unexpected local optimum.

Given M available RUs, the action of each agent i ∈
{1, 2, . . . , N} at k-th periodical access interval is defined as a
vector in one-hot form with length MT+1. Let βik denotes the
index of the maximum value in action vector aik. For instance,
βik = 0 represents that agent i does not access in this periodical
access time interval while βik ∈ {1, . . . ,MT} represents that
agent i accesses through RU

(
βik modM

)
in
⌊
βik
M

⌋
-th time

slot. As an example, when M = 2 and T = 10, βik = 13
represents that agent i will access through RU 1 at 6-th time
slot.

B.2 State
In the proposed MFMAPPO, the state sik of agent i at k-th

periodical access interval is given by

sik =
{
oik, D

i
k, D

−i
k , lik, β

i
k−1
}
. (6)

In (6), oik ∈ {−1, 0, 1} denotes the transmission result of
agent i at periodical access interval k − 1, where oik = 1
represents a successful access, oik = 0 represents that agent
i does not access and oik = −1 denotes a failed access. vik
is defined as the long-term throughput of agent i from the
beginning to k-th periodical access interval and v−ik as the
total long-term throughput of all other agents except agent i
itself. To mitigate the instability caused by the growing values
of vik and v−ik over time, both vik and v−ik are normalized as

Di
k =

vik
vik+v

−i
k

and D−ik =
v−ik

vik+v
−i
k

. Let lik denote the number
of periodical access intervals since its last successful access
for agent i, which is given by

lik+1 =

{
0, if agent i accesses successfully
lik + 1, otherwise

. (7)

We also include βik−1 in sik to provide history action
information, i.e., the selected RU and time slot in the last
transmission interval k − 1. Since oik only indicates whether
agent i accesses successfully or not at access interval k,
including both βik−1 and oik does not introduce redundancy.

In the considered multiple access scenario, the local infor-
mation that can be observed by agent i includes the transmis-
sion result of itself, the transmission results of others and the
local status of itself. The local state is thus defined as (6) to
include all the information, i.e., oik and βik−1 corresponding to
the transmission results of agent i; D−ik corresponding to the
transmission results of others, and Di

k and lik corresponding
to the current status of agent i.

B.3 Reward
As our goal is to maximize the total throughput of the

network while guaranteeing the fairness among agents, we for-
mulate two reward functions accordingly. One is the through-
put reward rtho,k for maximizing throughput. In particular,
we define the throughput reward ritho,k of agent i at k-th
periodical access interval as

ritho,k =


1, if agent i accesses successfully
0, if agent i does not access
−1, if agent i experiences a collision

. (8)
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The throughput reward ritho,k encourages successful access by
assigning positive rewards and punishes collisions with other
agents by assigning negative rewards.

The fairness reward rifai,k, on the other hand, is further
divided into two parts, i.e., we have rifai,k = rifai1,k+r

i
fai2,k,

where rifai1,k and rifai1,k are given by

rifai1,k =


1, if vik < vik,mid and βik ≥ 1

1, if vik ≥ vik,mid and βik = 0

−1, otherwise
(9)

and

rifai2,k =


1/2, if βik = 0, βik−1 > 0

1/2, if βik > 0, βik−1 = 0

−1/2, otherwise
, (10)

respectively. In (9) and (10), vik,mid denotes the median
throughput of agents that have the same packet arrival rate
as agent i. The first part rifai1,k encourages agents with lower
throughput to access, while those with higher throughput are
discouraged from access. The second part rifai2,k imposes
a mild penalty on agents that repeatedly choose either to
access or not to access during the training process. This
promotes fairness among agents by discouraging agents from
dominating the channel.

To address the multi-objective optimization problem, we
design two different rewards to evaluate corresponding ob-
jectives respectively. Rather than combining these competing
rewards, which could result in being trapped in suboptimal
solutions, we divide the rewards into two parts and adopt the
MCSP framework to evaluate them separately [21]. As will be
introduced in Section IV, by evaluating different state values
using corresponding critic networks, we can reduce the bias
and variance of state values estimation, which can improve the
convergence performance.

B.4 Global State
In the CTDE architecture, agents can utilize global infor-

mations for training. Compared with traditional ways to define
the global state by splicing each local state, we design two
unique global states including Sitho,k and Sifai,k for different
objectives and critic networks. Since the total throughput is
related only to the agent’s access behavior and not to their
current status, we only introduce the actions in order to
evaluate the throughput performance

Sitho,k ,
{
sik,a

−i
k

}
, (11)

where a−i
k =

∑
j 6=i a

j
k represents the sum of actions in the

form of one-hot vector of other STAs. Motivated by the MFE
[18], the global state Sitho,k takes the sum of actions of others
into consideration instead of the joint action of all the other
agents, in which the dimension becomes independent of the
number of agents.

On the other hand, since the fairness among agents only
relates to their current throughput, we introduce only the
throughput to complete the evaluation of fairness

Sifai,k ,
{
sik, v

0
k, v

1
k, . . . , v

N
k

}
(12)

where vik is the long-term throughput of agent i at k-th
periodical access interval.

IV. MFMAPPO ALGORITHM

Based on the Dec-POMDP formulation, we propose
the MFMAPPO algorithm in this section. The over-
all architecture is shown in Fig. 3, where experience
(s,Stho,Sfai,a, rtho, rfai) of each agent are jointly stored
in the memory, which are then utilized for updating the net-
work parameters in centralized training. In the execution stage,
only the Actor network is required to work. The convergence
of centralized training can be improved by utilizing the global
information of environment and other agents.

Actor

Network

Agent 1

Actor

Network

Agent 2

Actor 

Network

Agent N

Environment

Experience memory

…

Joint local state 

Joint action  

Joint global state  

Joint rewards  

Update memory 

every episode

Critic 1

Agent 1

Critic 2

Critic 1

Agent 2

Critic 2

Critic 1

Agent N

Critic 2
Mini-batch sample

Update critic1 and critc2 based on MSE Loss

Update actor based on actor loss

Calculate advantage based on GAE

Fig. 3. The procedure of the MFMAPPO based on CTDE architecture:
Centralized training is performed based on the experience reported by each
agent. In the end of each episode, the Critic networks first send the state
values of throughput and fairness to Actor for updating. Then, both Critic
and Actor update parameters based on the loss function.

A. Loss Function

As Section B.3 presents, we partition the reward into
ritho and rifai, and introduce two different critic networks
to evaluate state values of the throughput and the fairness
separately. For agent i, we define φi1 and φi2 as the parameters
of Critic 1 and Critic 2, respectively, and θi is defined as the
parameters of the Actor. The loss functions of Critic 1 and
Critic 2 in the proposed MFMAPPO algorithm have similar
forms as those in the MAPPO [20]:, which are given by


L
(
φi1

)
= 1
|Bi|

∑
j

(
max

[(
V i
φi1

(
Si
tho,j

)
− R̂itho,j

)2

,(
clip

(
V i
φi1

(
Si
tho,j

)
, V i
φi1

(
Si
tho,j

)
− ε, V i

φi1

(
Si
tho,j

)
+ ε

)
− R̂itho,j

)2]

L
(
φi2

)
= 1
|Bi|

∑
j

(
max

[(
V
φi2

(
Si
fai,j

)
− R̂ifai,j

)2

,(
clip

(
V
φi2

(
Si
fai,j

)
, V i
φi2

(
Si
fai,j

)
− ε, V i

φi2

(
Si
fai,j

)
+ ε

)
− R̂ifai,j

)2]
,

(13)

where Bi denotes the sampled batch of agent i, i.e., the
consecutive experiences (consisting of state, action, reward,
next state, and global state) used in each training iteration. j
denotes the index of the experiences in the sampled batch Bi.
Vφi

1

(
Sitho,j

)
and Vφi

2

(
Sifai,j

)
represent the state values of

throughput and fairness of agent i based on global state at
j-th periodical access interval, respectively, and R̂itho,j and

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3355276

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on May 31,2024 at 08:57:38 UTC from IEEE Xplore.  Restrictions apply. 



7

R̂ifai,j represent the total discounted rewards of ritho and
rifai at periodical access interval j. By calculating the loss of
each objective L(φi1), L(φ

i
2) based on different rewards, the

proposed MFMAPPO can have a more accurate evaluation of
state values and avoid the problem of flattening the gradient
of critic networks.

To better utilize the MCSP framework, we denote Aik =
ω1A

i
tho,k +ω2A

i
fai,k as the total advantage of agent i at k-th

periodical access interval, with ω1 and ω2 being coefficient
hyper parameters that can be adjusted to balance the objectives
of throughput and fairness. Through the General Advantage
Estimation (GAE) approach [35], Aitho,k and Aifai,k are de-
rived based on rewards ritho,k and rifai,k, and state values Vφi

1

and Vφi
2
, respectively, which are given by


Aitho,k =

∑∞
l=1(γλ)

l
(
ritho,k + γV

φi1

(
Sitho,k+l+1

)
− V

φi1

(
Sitho,k+l

))
Aifai,k =

∑∞
l=1(γλ)

l
(
rifai,k + γV

φi2

(
Sifai,k+l+1

)
− V

φi2

(
Sifai,k+l

))
Aik = ω1A

i
tho,k + ω2A

i
fai,k

(14)

where λ and γ is the hyper-parameters to control the bias and
variance respectively. The calculated advantage function Aik is
stored in the batch Bi, and the loss that the Actor of agent i
is trained to minimize is given by

L
(
θi
)
,

σ 1

|Bi|
∑
j

S
[
πθ

(
aij | s

i
j

)]
+

 1

|Bi|
∑
j

min
(
r
(
θi
)
Ai

j , clip
(
r
(
θi
)
, 1− ε, 1 + ε

)
Ai

j

), (15)

where j denotes the index of experiences in the sampled batch
Bi. r(θi) represents the ratio between the old policy and new
policy of agent i, S [πθ (aj | sj)] is defined as the entropy
of the new policy πθ (aj | sj) and σ denotes the entropy
coefficient.

B. Critic and Actor Networks

As Fig. 4 illustrates, each agent has two critic networks
and one actor network by extending the MCSP framework in
the MARL scenario to evaluate state values of its different
objectives separately.

1) Critic Network: To apply the MCSP in the MARL
scenario, we introduce global states to provide global infor-
mation in the centralized training. Moreover, we propose two
global states Sitho,S

i
fai as the input of Critic 1 and Critic

2 respectively to evaluate the value functions of throughput
and fairness. As Fig.4 illustrates, Critic 1 takes the global
state Sitho as input and outputs the state value of throughput,
and Critic 2 takes the global state Sifai as input and outputs
the state value of fairness. Through the shortened size of Sitho
motivated by the MFE approach, the computational complexity
can be greatly reduced.

In particular, the Gated Recurrent Unit (GRU) is applied
to record the historical state information of each agent, so
that the agent can estimate state values more accurately [36].
The hidden states of GRU h

(i)
0,φ1

and h(i)
0,φ2

of Critic 1 and
Critic 2 are initialized at the beginning of each epoch during
training. In the multilayer perceptron (MLP) layer and the full

MLP

GRU

FC

MLP

GRU

FC

MLP1

GRU

MLP2

Pot Product and GAE

Sample
Pop-ArtPop-Art

Fig. 4. The extended MCSP architecture in MFMAPPO. MLP represents
the multilayer perceptron, GRU represents the gate recurrent unit and FC
represents the full-connected layer.

connect (FC) layer, the rectified linear unit (ReLU) is used as
the activation function.

In the MORL scenario, the value functions of different ob-
jectives have inconsistent and independent distribution. Since
the advantage function takes all value functions into consider-
ation as shown in (14), multiple value functions would lead to
an unstable advantage function. To address this issue, we apply
the Preserving Outputs Precisely-Adaptive Rescaling Target
(Pop-Art) technique in both the Critic 1 and the Critic 2 [37].
During training, the Pop-Art layer will adaptively adjust the
estimation of the mean value and variance of the state values,
which are then used to normalize the state values V i

φi
1,k

and
V i
φi

2,k
of Critic 1 and Critic 2. By normalizing state values,

the stability and convergence of the MFMAPPO can be further
improved.

2) Actor Network: As Fig. 4 illustrates, the Actor outputs
the action aik based on the state sik at k-th periodical access
interval. To take consideration of historical states, the GRU is
applied in the Actor network so that the agent can make more
suitable action. The hidden state of GRU h

(i)
0,θ of Actor are

initialized at the beginning of each episode. Here we also use
the ReLU as the activation function of MLP1 and MLP2 in
Actor network. The vector output by MLP2 is the probability
distribution of performing each action in the current state sik
and then the action aik is selected by sampling the probability
distribution.

C. Computational Complexity

This section will present the analysis of the computational
complexity of the proposed MFMAPPO algorithm.

For the state space, as the state vector sik presented in (6),
it is a vector with fixed length 5 and does not increase with
number of STAs N or number of channels M . For the action
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space, given the number of time slots in each periodic access
interval as T = b N2M c, the size of the action can be derived as
bN2 c + 1 as defined in Section B.1, which increases linearly
with respect to the number of STAs. For the size of global
states, as presented in (11) and (12), the length of global
states Sitho,k and Sifai,k are given by bN2 c + 6 and N + 5,
respectively. By using the global state motivated by the MFE,
the size of inputs of both critic networks only increases linearly
with respect to the number of STAs and is independent of
the number of channels. Moreover, since the dimension of
Sitho,k and Sifai,k are bN2 c+ 6 and N + 5, respectively, and
the dimension of their concatenation {sik,a

−i
k , v1k, . . . , v

N
k }

is bN2 c + N + 6, utilizing two separate global states as the
input of different networks instead of taking the concatenation
as the input of all networks can further reduce computational
complexity by nearly half and enhance evaluation capabilities.

With the above illustration, now let us consider the compu-
tational complexity in the training stage, both Critic 1, Critic
2 and Actor are required to work. As illustrated in [38],
the computational complexity of MLP and GRU increases
linearly with the length of input and output. In the proposed
MFMAPPO, global states Sitho,k,S

i
fai,k and state sik are the

input of Critic 1, Critic 2 and Actor, respectively. The output
of them are V i

φi
1
, V i

φi
2

and aik, which have sizes of 1, 1 and
bN2 c+1, respectively. Therefore, the computational complexity
of Critic 1, Critic 2 and Actor are all given by O(N), with
which the computational complexity of the MFMAPPO is
given by O(N) during training.

Considering the computational complexity during execution,
only Actor is required to work due to the CTDE architecture.
As presented above, the overall computational complexity of
MFMAPPO is O(N) during execution, which equals to that
of Actor. Therefore, the proposed MFMAPPO has a lower
computational complexity than other MARL-based multiple
access approaches [4], [9]–[11], [16], and can be applied in
the massive access scenario.

D. Algorithm Overview

The overall MFMAPPO procedure is illustrated in Fig.
3. During training, each agent independently decides the
action aik based on its local state sik at each periodical
transmission interval k, receives the reward ritho,k, r

i
fai,k

and moves to next state sik+1. Then, the experience
(s,Stho,Sfai,a, rtho, rfai) of all agents will be jointly
stored in a joint memory. The global information is extracted
into the global states Stho,Sfai. After collecting experiences,
the joint collected experiences are divided into the experience
of each agent to form the agent-specific memory Ei, including
si,Sitho,S

i
fai,a

i, ritho and rifai. Subsequently, each agent
i starts updating its own MFMAPPO model independently
utilizing the sampled batch Bi. During parameters updating,
each state value V i

φi
1

and V i
φi

2
of agent i is calculated through

different Critic networks, and is used to calculate the loss func-
tion L(φi1), L(φ

i
2) and L(θi), respectively. Then, the Critic

1, Critic 2 and Actor networks update their parameters based
on the loss function L(φi1), L(φ

i
2) and L(θi). Though agents

update the model parameters independently, they can utilize

the global information including in global states Stho,Sfai to
learn cooperative transmission strategies. The overall pseudo-
code of the proposed MFMAPPO algorithm is summarized in
Algorithm 1.

Algorithm 1 MFMAPPO Algorithm
1: Initialize parameters: φi1, φi2, θi, ai0 = 0, oi0 = 0, vi0 = 0, T = b N

2M
c,

for ∀i ∈ {1, 2, . . . , N}
2: Initialize h(1)

0,θ , . . .h
(N)
0,θ of Actor for all agents

3: Initialize h(1)
0,φ1

, . . .h
(N)
0,φ1

of Critic 1 for all agents

4: Initialize h(1)
0,φ2

, . . .h
(N)
0,φ2

of Critic 2 for all agents
5: while t < kmaxT do
6: for agent i = 1, 2, . . . , N do
7: if t mod T = 0 then
8: Calculate state sik, where k = t

T
9: if agent i has packet to transmit then

10: Generating aik ← πθi (s
i
k)

11: else
12: βi

k ← 0, agent i wait
13: Execute action aik
14: for agent i = 1, 2, . . . , N do
15: Receive reward ritho,k, r

i
fai,k and global state Sitho,k,S

i
fai,k

16: Store experience
(
si,Sitho,S

i
fai,a

i, ritho, r
i
fai

)
as the ex-

perience into memory Ei
17: for agent i = 1, 2, . . . , N do
18: Randomly sample experiences Bi from the memory D
19: for b in sampled batch Bi do
20: Calculate discounted reward R̂tho,k , R̂fai,k based on rtho,b,

rfai,k

21: Output normalized state values Vφi
1

(
Sitho,k

)
, Vφi

2

(
Sifai,k

)
through each critic using Pop-Art

22: Compute loss L(φi1) and L(φi2) of critic net- works
23: Compute advantage Ai

tho,b and Ai
fai,k based on the GAE

24: Compute actor loss L(θi) based on advantages Ai
tho,b, Ai

fai,k

25: Update φi1, φi2 and θi by performing mini-batch gradient descent
26: Empty the memory Ei = {}
27: Move to next episode

In practice, the trained model of the actor can be piggy-
backed in the TF, which is broadcast to each STAs by the
AP. In such way, the AP should be aware of the number
of associated STAs to determine which model to broadcast.
Therefore, the association between AP and STAs is required to
distribute the MFMAPPO model. There are various approaches
to establish the association between AP and STA, including
probe request, passive scanning and active scanning [39],
[40]. After the association is done, the number of associated
STAs can be readily acquired by the AP. Then, the proposed
MFMAPPO model trained in the network of N STAs can
be distributed to each STA through the TF. Note that STAs
may enter or leave the network dynamically. In this case, the
above approach can also be applied since the AP is aware of
the number of associated STAs.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate our proposed MFMAPPO algo-
rithm by providing simulation results under different scenarios.
In the following, we first introduce the simulation setup, and
then the detailed performance evaluations will be presented
under different scenarios.
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TABLE I
NETWORK PARAMETERS 1

Parameters Value
Duration of SIFS tSIFS 16µs

Duration of BA tBA 68µs

Duration of one PPDU tPPDU 512µs

Duration of one RS slot tRS 16µs

Duration of one TF-R tTF−R 100µs

Duration of one time slot tslot 512µs

TABLE II
HYPER-PARAMETERS OF MFMAPPO

Parameters Value
Learning rate 5 · 10−4

Discounted factor γ 0.98
Experience memory size 400

Training epochs 8
Policy entropy coefficient σ 0.002

GAE factor λ 0.95
Huber loss δ 10

Optimizer Adam

A. Simulation Setup

We consider a homogeneous wireless communication net-
work where N STAs deployed with the proposed MFMAPPO
algorithm or other multiple access methods access the AP
through M RUs. In following simulations, the duration of one
time slot is set to be 512µs, which equals to the duration time
of one Presentation Protocol Data Unit (PPDU). We assume
Bernoulli packet arrival for each STA and the packet arrival
rate is denoted as λ. The buffer size of each STA is set to be
10 packets, and packets would be discarded when the buffer
is full. The network parameters are summarized in Table I.

To present a comprehensive comparison, we introduce a
series of methods as baselines, including IPPO, Random,
UORA and H-UORA [22].

1) MFMAPPO: As the architecture of the MFMAPPO
algorithm shown in Fig. 4, the number of features of GRU
layer in the actor network is 150 and that of GRU in both
critics network is 300 when the number of STAs is N = 150.
The number of hidden layers of MLP is 2 and that of GRU is
1 in both actor network and critic networks. During training,
the number of time steps of each GRU in both actor network
and critic networks is 2. The number of samples equals to
the length of an episode. There is no re-training or parameter
update during evaluation. The detailed hyper-parameters of the
MFMAPPO algorithm are presented in Table II.

2) IPPO: Independent PPO (IPPO) is introduced as the
baseline of single-agent RL methods applied in the problem.
For comparison, the actor network in IPPO is the same as
that in the MFMAPPO algorithm. Then, the neural network

1Here, the time duration of the packet payload, i.e., the PPDU, is given
instead of the packet size. This is because in this work, we consider the
throughput defined as the time proportion for successfully-transmitted pay-
loads. With this regard, when each STA has the same packet transmission rate
R (in unit of bit/s), the throughput defined as the proportion of successfully-
transmitted payloads can be easily translated into the one defined as the
amount of the successfully transmitted data bits per used time (in unit of
bit/s), by simply multiplying with R.

TF-R

STA1  OBO= 1

STA2  OBO= 5

STA3  OBO= 2

STA4  OBO= 3

STA1  OBO= -2

STA2  OBO=  2

STA3  OBO=  -1

STA4  OBO=  0

RU 1 RU 1 ← STA 4

RU 2 ← STA 1

HE-TB PPDU

Multi-STA

BA
RU 2

IDLE

RU 3 IDLE IDLE RU 3 ← STA 3

STA1  

STA3  

STA4  

STA3

STA4  

STA3  

SIFS

SIFS

(a)

U-1 RS slots

U RS slots

Allot a portion of the Payload 

duration to increase the RS slots

Payload duration

Payload duration

UL OFDMA PPDU duration

(b)

Fig. 5. Illustration of H-UORA. (a) random access mechanism of H-UORA.
(b) RU sensing slots U in H-UORA.

architecture of critic is also the same as that of MFMAPPO
while it has only 32 neurons in the GRU layer because there
has no global states in the IPPO method. The definition of
state, action and reward in IPPO are also the same as those in
the MFMAPPO while there is no global state in the IPPO.

3) Random: Random method serves as the baseline for
the action mechanism of the proposed MFMAPPO algorithm.
In Random method, each agent randomly selects an action
as introduced in the MFMAPPO at each periodical access
interval.

4) UORA: We introduce the UORA method as the baseline
of traditional random access methods in the uplink OFDMA
scenario. As presented in Fig. 2, each agent attempts to access
if the OBO count decreased by the number of RUs M is non-
positive. The optimal transmission probability qm has been
given as qm = M

N in the multiple RUs scenario, where N and
M represent the number of STAs and RUs, respectively [3].

5) H-UORA: We introduce the H-UORA as a novel multiple
access method based on UORA [22]. This method reduces the
collision probability by allowing carrier sensing and retrans-
missions in multiple time slots within the HE-TB PPDU. As
Fig. 5 illustrates, STAs have several chances to detect idle RUs
using RU granulated carrier sensing before transmitting. The
slot for RU sensing process is called RS slots. As illustrated
in Fig. 5a, the OBO counter of STA1, STA2, STA3 and STA4
are decreased to −2, 2, −1 and 0 respectively after received
the TF-R. Then, each STA which has a non-positive OBO
counter attempts to access RUs. In the beginning of each RS
slot 0 ≤ u ≤ U , each STA i calculates the transmission
probability ρu based on the number of available idle RUs and
the value of u and generates a random value Xi

u. Then, STAs
with Xi

u ≤ ρu randomly choose an idle RU to access. Other
STAs with Xi

u ≥ ρu keep carrier sensing until the next RS
slot. Such procedure repeats until all U RS slots have passed or
all STAs with non-positive OBO counter access successfully.
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B. Performance Metrics

The following metrics are used to evaluate the performance
of the proposed MFMAPPO algorithm.
• JFI: We introduce Jain Fairness Index (JFI) to evaluate

the fairness of STAs with same traffic. The JFI is defined
as:

JFI =

(∑N
i=1 v

i
)2

N
∑N
i=1 (v

i)
2
, (16)

where N is the number of STAs and vi is the long-
term throughput of STA i and JFI ∈

[
1
N , 1

]
. When

JFI = 1, the STAs in the network have absolutely
fair throughput. When JFI = 1

N , one of the agents
has completely monopolized the wireless resource, which
ruins the fairness. Moreover, when STAs have different
packet arrival rate averaged over time in different groups,
we demonstrate the average JFI over groups.

• Throughput: In scenario C, D and E, we demonstrate the
short-term throughput of all agents, which is obtained
as the proportion for successfully-transmitted payload
over the past 2000 slots. In scenario F, G and H, we
demonstrate the long-term throughput of each agent,
which is obtained as the proportion for successfully-
transmitted payload over the whole simulation.

C. Single-RU
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Fig. 6. Performance comparison between each method of dynamic traffic
single RU scenario with N = 100, M = 1 and static packet arrival rate
λ = 0.05.

In this section, we consider only a single RU in the network,
i.e., M = 1. First, we consider N = 100 and the packet
arrival rate of STAs is given by λ = 0.05, and thus the
network becomes saturated. As shown in Fig. 6, the throughput
performance of the MFMAPPO algorithm is nearly optimal
approaching the maximum bound, which is much better than
other methods.

For other methods, it can be seen from Fig. 6 that IPPO
can perform better than other methods based on random access
including UORA and Random, whose throughput performance
is limited by 1/e ≈ 37%. Moreover, the performance im-
provement of H-UORA method is limited with the growth of
RS slots U as the throughput of H-UORA with U = 16 is

TABLE III
THE DETAILED SIMULATION RESULTS FOR SCENARIO.C

Method Long-Term Throughput JFI
UORA 0.2972 0.9913

Random 0.2705 0.9992
MFMAPPO 0.9701 0.9955

IPPO 0.3497 0.9995
H-UORA,U=4 0.4847 0.9762
H-UORA,U=16 0.5465 0.9838
H-UORA,U=32 0.5122 0.9728
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Fig. 7. Performance comparison between each method of different sce-
narios. (a) N = 100 STAs, M = 1 RU and dynamic arrival rate
λ ∈ {1, 0.006, 0.002, 1}. (b) N = 150 STAs, M = 1 RU and dynamic
packet arrival rate is λ ∈ {0.005, 0.001, 0.005, 0.001}.

better than that of U = 4 and U = 32. Though the increasing
of RS slots U can improve the successful access probability
by performing more RU sensing slots, the payload duration
will be reduced as Fig. 5 illustrates. Table III further presents
the fairness performance, and indicates that the proposed
MFMAPPO algorithm achieves high JFI as well as other
methods, i.e., Random, IPPO, UORA and H-UORA.

Since the proposed MFMAPPO and H-UORA have much
better throughput performance than other methods in pre-
vious simulations, we only demonstrate comparison of the
MFMAPPO with H-UORA in the following. We now consider
the scenario that packet arrival rate of each STA λ is dynamic
over time.

Fig. 7a shows the performance comparison of total through-
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Fig. 8. Performance comparison between each methods of scenario with
N = 150 STAs, M = 5 RUs and dynamic arrival rate λ ∈
{0.02, 0.01, 0.015, 0.025}.

put when N = 100. Here the packet arrival rate λ ∈
{1, 0.006, 0.002, 1} indicates that λ changes after same time
interval, i.e., λ varies from 1 to 0.006, to 0.002 and to
1 after an equal time interval. As shown in Fig. 7a, the
proposed MFMAPPO algorithm can also achieve a nearly
optimal throughput performance while the H-UORA can only
have half of the throughput of MFMAPPO when the traffic is
saturated.

To better simulate the massive access scenario, we further
consider a scenario with more STAs, i.e., N = 150, and
the packet arrival rate λ ∈ {0.005, 0.001, 0.005, 0.001}. Fig.
7b demonstrates that the MFMAPPO can still maintain the
nearly optimal throughput performance without throughput
deterioration, which demonstrate the capability of MFMAPPO
to deal with the large-scale single-RU access condition.

D. Multi-RU

In this section, we further consider the scenario with mul-
tiple RUs. The number of RUs and STAs remain unchanged
over time, i.e., M = 5, N = 150. The packet arrival rate
λ ∈ {0.02, 0.01, 0.015, 0.025}, i.e., λ varies from 0.02 to 0.01,
to 0.015 and to 0.025 after an equal time interval.

As shown in Fig. 8, the proposed MFMAPPO algorithm
can work well in the dynamic traffic scenario with multiple
RUs and performs better than H-UORA. By combining Fig.
7a, Fig. 7b and Fig. 8, we can see that a fixed configuration
of RS slots U in H-UORA cannot adapt to the dynamic traffic
condition. In particular, when the traffic is light, a small U
is preferred since a large U leads to unnecessary overhead of
carrier sensing. When the traffic becomes heavy, a large U
can better alleviate channel contention, and yet a overly-large
U may lead to throughput deterioration due to the incurred
carrier sensing overhead.

In previous simulations, each STA has the same packet
arrival rate. We now consider the condition that STAs have
different packet arrival rates. We set N = 60 and M = 10
in the following simulations and divide all N STAs into
three groups as N1 = {1, . . . , 20}, N2 = {21, . . . , 40} and
N3 = {41, . . . , 60}.
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Fig. 9. Performance comparison between H-UORA with various value of U
and MFMAPPO with N = 60 and M = 10. The diverse packet arrival rates
are static: λi = 0.05, ∀i ∈ N1, λi = 0.1, ∀i ∈ N2 and λi = 0.15, ∀i ∈
N3.

TABLE IV
THE THROUGHPUT PERFORMANCE OF EACH GROUP WITH STATIC TRAFFIC

Method N1 N2 N3

MFMAPPO 0.0497 0.0985 0.1438
H-UORA,U=4 0.0464 0.0807 0.0935
H-UORA,U=16 0.0410 0.0817 0.1218
H-UORA,U=32 0.0330 0.0662 0.0987

The packet arrival rates vary across groups, i.e., λi =
0.05,∀i ∈ N1, λi = 0.1,∀i ∈ N2 and λi = 0.15,∀i ∈ N3.
As shown in Fig. 9 and Table IV, for groups N2,N3 with
heavy traffic, the long-term throughput performance of H-
UORA with U = 16 is better than that with U = 4 and
U = 32, while it is opposite for the group N1 with light
traffic. Similarly, we can see from Table IV that H-UORA
with a small U is only suitable to light traffic, and that a
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Fig. 10. Performance comparison between H-UORA with various value of
U and MFMAPPO with N = 60 and M = 10. The diverse packet arrival
rates are dynamic with time-averaged values: λi = 0.05, ∀i ∈ N1, λi =
0.1,∀i ∈N2, λi = 0.15, ∀i ∈N3.

overly-large U leads to throughput deterioration even when
traffic is heavy. For the proposed MFMAPPO algorithm, its
performance exceeds H-UORA for each group of agents while
ensuring the fairness across STAs in each group.

Moving forward, we consider the condition that each STA
in the same group has a varied packet arrival rate while the
packet arrival rate averaged over time remains identical, i.e.,
λi = 0.05,∀i ∈ N1, λi = 0.1,∀i ∈ N2, λi = 0.15,∀i ∈
N3. For one STA in the same group, its packet arrival rate
has a larger variance over time. As an example, we let λ1 ∈
0.012, 0.05, 0.088 for STA 1, and λ10 ∈ 0.03, 0.05, 0.07 for
STA 10 which is in the same group with agent 1.

As shown in Fig. 10, although the packet arrival rates
λ averaged over time is identical, the performance of H-
UORA is greatly affected by the large variance of the packet
arrival rate over time, especially when U is small. When the

traffic is heavy, i.e., λ3 = 0.15 in groups N3, the agents
with larger variance have a lower average throughput, which
further proves that the fixed configuration of H-UORA cannot
adapt to the diverse conditions across STAs well and the
greater traffic variance further deteriorates the throughput of
H-UORA. In contrast, the proposed MFMAPPO shows a much
better adaptation capacity.

Note that the above results of MFMAPPO are obtained
by the trained model after convergence. In the following,
we present the convergence performance of the proposed
MFMAPPO in Fig. 11 by comparing the average rewards
obtained by agents in each episode under different scenarios,
i.e., the scenarios of Fig. 6, Fig. 7a, Fig. 7b, Fig. 8 and
Fig. 9. It can be observed that in the scenarios of Fig. 6,
Fig. 7a, Fig. 7b, Fig. 8 and Fig. 9, the MFMAPPO can
converge at about 250-th, 250-th, 200-th, 450-th and 200-th
episode, respectively. Though the numbers of STAs and packet
arrival rates vary across different scenarios, the MFMAPPO
can converge in each scenario.
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Fig. 11. The convergence of MFMAPPO under different scenarios.

E. Test Traffic Different from Training Traffic

In previous simulations, the training traffic is the same as
testing traffic, i.e., the packet arrival rate in training equals that
in the test. To see the generalization capacity of the proposed
MFMAPPO algorithm, we evaluate the performance of the
MFMAPPO in the condition that test traffic is different from
training traffic.

First, we consider the scenario that there are N = 100
agents who have the identical traffic accessing the network
through only one RU. The training traffic is set to be saturated,
i.e., λ = 1. Table V presents the throughput in test, where
the target denotes the upper bound of throughput. As Table
V illustrates, the performance of MFMAPPO with each test
traffic can maintain nearly optimal even when the packet
arrival rate is different from that in training.

Then we consider the scenario of dynamic and diverse traffic
with N = 60 and M = 10. By dividing all N STAs into
three groups as N1 = {1, . . . , 20}, N2 = {21, . . . , 40} and
N3 = {41, . . . , 60}, the packet arrival rate of each group for
training and testing is shown in Table VI. In 1st and 2nd row,
the packet arrival rate averaged over time for training equals
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TABLE V
PERFORMANCE WITH VARIOUS TEST TRAFFIC

Test Traffic Throughput Target JFI
λ = 0.05 0.9679 1 0.9943
λ = 0.005 0.4838 0.5 0.9930

λ ∈ {0.005, 0.001, 0.003} 0.2877 0.3 0.9901

that in the test for each group. In this case, the throughput
and fairness performance will not be greatly affected. In the
3rd and 4th row, the packet arrival rate averaged over time for
training does not equal that in the test for each group. As a
result, the throughput and the fairness will be greatly affected.

TABLE VI
TRAINING TRAFFIC AND CORRESPONDING TEST TRAFFIC

Training Traffic Test Traffic Throughput Target JFI

λi ∈ {0.05, 0.07, 0.05}, ∀i ∈ N1 λi ∈ {0.03, 0.07, 0.07}, ∀i ∈ N1

0.63 0.65 0.998λi ∈ {0.1, 0.12}, ∀i ∈ N2 λ1 ∈ {0.09, 0.11, 0.13}, ∀i ∈ N2

λi ∈ {0.15, 0.17}, ∀i ∈ N3 λi ∈ {0.12, 0.2}, ∀i ∈ N3

λ1 ∈ {0.05}, ∀i ∈ N1 λi ∈ {0.03, 0.07}, ∀i ∈ N1

0.527 0.6 0.99λi ∈ {0.1}, ∀i ∈ N2 λi ∈ {0.08, 0.12}, ∀i ∈ N2

λi ∈ {0.15}, ∀i ∈ N3 λi ∈ {0.12, 0.18}, ∀i ∈ N3

λi ∈ {0.05}, ∀i ∈ N1 λi ∈ {0.08, 0.12}, ∀i ∈ N1

0.481 0.6 0.977λi ∈ {0.1}, ∀i ∈ N2 λi ∈ {0.12, 0.18}, ∀i ∈ N2

λi ∈ {0.15}, ∀i ∈ N3 λi ∈ {0.03, 0.07}, ∀i ∈ N3

λi ∈ {0.05, 0.07, 0.05}, ∀i ∈ N1 λi ∈ {0.18, 0.12}, ∀i ∈ N1

0.545 0.66 0.969λi ∈ {0.1, 0.12}, ∀i ∈ N2 λi ∈ {0.1, 0.06}, ∀i ∈ N2

λi ∈ {0.15, 0.17}, ∀i ∈ N3 λi ∈ {0.13, 0.07}, ∀i ∈ N3

Multiple Traffic
Combination Same as 3rd row 0.552 0.6 0.994

Multiple Traffic
Combination Same as 4th row 0.576 0.66 0.982

To improve the performance when the packet arrival rates
averaged over time in training is different with that in the test,
we consider a multiple training traffic combination in 5th and
6th row at Table VI. In particular, each STA includes traffic
combinations with different time-averaged value during train-
ing, i.e., one of the following three training traffic combination
is randomly selected over episodes: 1) λi = 0.05,∀i ∈ N1,
λi = 0.1,∀i ∈ N2, λi = 0.15,∀i ∈ N3; 2) λi =
0.1,∀i ∈ N1, λi = 0.15,∀i ∈ N2, λi = 0.05,∀i ∈ N3; 3)
λi = 0.15,∀i ∈ N1, λi = 0.05,∀i ∈ N2, λi = 0.1,∀i ∈ N3.
The performance comparison with different test traffics is also
shown in Table VI. As shown in Table VI, the MFMAPPO
with such training setting can have better generalization ca-
pacity in terms that even when the time-averaged value of test
traffic is different with that in training traffic combinations as
shown in the 5th, 6th row, the MFMAPPO can also achieves
a better throughput and fairness performance compared with
those in 3rd, 4th row respectively.

We can conclude from the aforementioned simulations that:
1) When all agents have identical packet arrival rate, the
MFMAPPO with saturated training traffic can adapt to various
test traffic without retraining. 2) When agents have different
packet arrival rate, the MFMAPPO can adapt to the packet
arrival rates in the test that have the same time-averaged
value as those in training. 3) When the packet arrival rate of
MFMAPPO in training includes multiple traffic combinations,
the MFMAPPO can adapt to those packet arrival rates that
have different time-averaged from those in training.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the MFMAPPO algorithm
based on MARL for the uplink OFDMA scenario in IEEE
802.11ax networks. To address the massive access problem,
a novel global state motivated by the MFE is introduced
in MFMAPPO to enhance the convergence performance and
greatly reduce the computational complexity during training.
Moreover, the CTDE architecture is applied to improve perfor-
mance in terms of both throughput and fairness and reduce the
computational complexity during execution stage. Considering
the conflict between throughput and fairness, the MCSP frame-
work is introduced in the proposed MFMAPPO algorithm
to address the fairness issue while improving throughput by
evaluating those state values through different critic networks.
Furthermore, we have introduced the action mechanism that
lets agents decide action every certain slots to expand the size
of action space, which avoids from converging to the local
optimal strategy due to excessive collisions. Simulation results
show that MFMAPPO can achieve nearly optimal throughput
performance while guaranteeing the fairness in various traffic
configurations. Moving forward, it would be interesting to
consider other performance metrics such as delay, to fully
exploit the power of RL in the multiple access problem for
the next generation wireless networks.
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