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Abstract—Massive machine type communications (mMTC) is
one of the key use cases of the fifth-generation (5G). Grant-free
access has emerged as a promising technique to reduce the access
delay. As one of the representative grant-free schemes, slotted
Aloha has recently attracted much attention. This paper focuses
on the optimization of sum rate of a slotted Aloha network to
achieve the low latency. By deriving the probability of successful
transmissions of head-of-line packets, the network sum rate is
obtained as explicit function of key system parameters. Based
on this analytical expression, the maximum sum rate is derived
by optimizing the transmission probabilities of nodes and the
blocklength of packets. The effect of the number of information
bits per packet and the retry limit on the optimal sum rate
performance is characterized. The analysis shows that the retry
limit does not affect the maximum sum rate, while a larger
number of information bits per packet ameliorates the maximum
sum rate in the finite blocklength region.

Index Terms—Aloha, finite blocklength region, network sum
rate.

I. INTRODUCTION

Along with the arrival of the era of Internet of Things (IoT),

billions of everyday objects (e.g., watches, doors and vehicles)

are expected to be connected and join the Internet via radio

communication link. For enabling the vision of IoT, Machine

Type communications (MTC) [1] has been considered as

the key foundation, which can provide pervasive wireless

connectivity for autonomous devices with minimum or no

human intervention. The large volume of traffic generated by

massive MTC devices will have a major influence on the next-

generation cellular networks. As such, massive MTC (mMTC)

has been identified as one of the main use cases for 5G.

The mMTC traffic has distinctive characteristics compared

to the traditional human-type communications traffic [2]. For

instance, the number of MTC devices can be very large, e.g.,

over 104 per cell, while each MTC device (e.g., smart meter)

usually transmits short packets, which can be only several bits
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[3]. Coordinating the massive short packet transmissions in a

centralized manner is very inefficient and may also induce a

great deal of signalling cost that overwhelms the communica-

tion system. Accordingly, supporting the massive access from

mMTC based on random access protocols is a consensus that

gradually comes to being [4]. As one of the representative

random access protocols, Aloha and its variations have gained

renewed interests recently and been applied in many emerging

low power and long range technologies, such as Sigfox and

Long Range (LoRa) Radio, for supporting mMTC applications

[5]. With Aloha, each node independently decides when to

transmit and backs off if its transmission fails.

Despite its simplicity in concept, how to analyze and

optimize the performance of Aloha has long been known as

notoriously difficult. There has been a long line of research on

Aloha, which dates back to Abramson’s landmark paper [6] in

70’s, in which by modeling the aggregate traffic as a Poisson

random variable with parameter G, the network throughput

(i.e., the average number of successfully decoded packets per

time slot) is obtained as Ge−G, and maximized at e−1 when

G = 1. To achieve the maximum network throughput, various

strategies have been developed to adjust the transmission prob-

ability of nodes by periodically estimating the channel load

[7], [8]. Similar parameter tuning approaches were recently

developed for the massive random access of MTC devices in

cellular networks based on the realtime/statistical information

of the traffic on the random access channel [9]–[13].

In above studies, it is usually assumed that the packet can be

successfully decoded at the receiver if and only if there is no

concurrent transmission. This assumption can greatly simplify

the analysis while implicitly indicates an arbitrarily small

packet error probability that can only be achieved with infinite

blocklength [14]. However, for short-packet transmissions in

mMTC, particularly those low-latency mMTC services, the

blocklength is finite and sometimes, small, leading to an

nonzero probability that transmissions fail due to decoding

error [15].

Note that given number of information bits to be transmit-

ted, each node can choose its blocklength of packets based

on the channel conditions, that would affect the sum rate
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(i.e., the average successfully transmitted information bits per

channel use) performance. With a small blocklength, the sum

rate performance may degrade due to a large packet error

probability. Yet, if the blocklength is too large, each node’s

information encoding rate becomes small, which also degrades

the sum rate performance. Therefore, besides the transmission

probability of each node, the blocklength of each packet is also

an important system parameter that should be carefully tuned.

This leads to new questions: in finite blocklength region, what

is maximum sum rate that the Aloha networks can achieve and

how to jointly tune the transmission probability of each node

and the blocklength of each packet to achieve it?

This paper aims to contribute to the understanding of the

above open issues by considering an n-node slotted Aloha

network where all the nodes transmit to a single receiver via an

Additive white Gaussian noise (AWGN) channel. Each node

encodes k bits of information into one packet of blocklength

N , and one packet would be dropped after M th transmission

failure. By extending the analytical framework in [16], the

network sum rate is obtained as explicit functions of the

system parameters, based on which the optimal sum rate

performance is further characterized by jointly tuning the

transmission probabilities of nodes and the blocklength of

packets. The analysis reveals that both the maximum sum rate

and the corresponding optimal blocklength are independent of

the retry limit M , while the optimal transmission probability of

nodes varies with M . To improve the maximum sum rate, the

number of information bits per packet k should be enlarged,

while the performance gain becomes marginal if k is large.

The remainder of this paper is organized as follows. Section

II presents the system model and preliminary analysis. In

Section III, the network sum rate is derived and maximized.

Conclusions are summarized in Section IV.

II. SYSTEM MODEL AND PRELIMINARY ANALYSIS

Consider an n-node Aloha network where each node trans-

mits to one common receiver. Assume that each node always

has information bits to send. Each node encodes k information

bits to a codeword, i.e., a sequence of symbols, as one packet

to be transmitted over the channel. We will refer to the number

of symbols N as the blocklength (which is also the packet

length). Assume the time axis is slotted, and each packet

transmission lasts for one slot. The information encoding rate

of each node is then equal to the ratio of the number of

information bits per packet k to the blocklength N , i.e.,

R =
k

N
. (1)

An AWGN channel is assumed between each node and the

receiver. To ensure fairness, each node performs power control

to compensate for the large-scale fading, which results in an

identical received signal to noise ratio (SNR) ρ at the receiver.

The channel capacity is defined as the largest information

encoding rate k/N for which the packet error probability

can be made arbitrarily small by choosing the blocklength

N sufficiently large. With the AWGN channel, as N goes
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Fig. 1. Embedded markov chain of the state transition process of an individual
HOL packet with retry limit M .

to infinity, the information encoding rate of each node can

approach the channel capacity log2(1+ ρ) by random coding.

In the finite blocklength region, nevertheless, we have rate loss

from the channel capacity, and the information encoding rate

of each node can be approximately written as [17]

R = log2(1 + ρ)−
√

V

N
Q−1(ε) +

1

2N
log2 N, (2)

where Q−1(·) denotes the inverse of the Gaussian Q function

and the channel dispersion V is given by V = ρ 2+ρ
1+ρ2 (log2 e)

2,

and ε denotes the packet error probability, which can be

obtained as

ε = Q

(
N log2(1 + ρ)− k + (log2 N)/2√

NV

)
, (3)

by combining (1) and (2).

The classic collision model is assumed, i.e., one packet

transmission would fail if more than one node attempt to

transmit at the same time. Therefore, a packet transmission

is successful as long as there are no concurrent transmissions

and no decoding error. Assume perfect and instant feedback of

the transmission outcome from the receiver. For each node, if

the head-of-line (HOL) packet in its buffer has experienced

ith transmission failure, it would attempt to retransmit the

packet with probability of qi. To avoid excessive access

delay, consider that one packet would be dropped after M -th

transmission failure, and M is refered to as the retry limit.

Without loss of generality, let qi = q0Q(i), where q0 is

the initial transmission probability and Q(i) is an arbitrary

monotonic non-increasing function of i with Q(0) = 1 and

Q(i) ≤ Q(i− 1), i = 1, · · · ,M .

A. State Characterization of HOL Packets

The behavior of the HOL packet in each node’s queue can

be characterized by a discrete-time Markov renewal process

(X,V) = {(Xj , Vj), j = 0, 1, . . . }, where Xj denotes the

state of the HOL packet at the j-th transition and Vj denotes

the epoch at which the j-th transition occurs. Fig. 1 shows the

embedded markov chain X = {Xj}. The states of {Xj} can

be divided into three categories: 1) waiting to request (State

Ri, i = 0, . . . ,M − 1) 2) collision (State Fi,i = 0, . . . ,M −
1) and 3) successful transmission (State T ). A HOL packet

moves from State Ri to State T if the transmission succeeds;
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Fig. 2. Packet error probability ε and the probability of successful transmissions of HOL packets p versus the blocklength N . ρ = 10. q0 = 0.1. n = 20.
Q(i) = 2−i. (a) ε versus N . (b) p versus N .

otherwise, it will stay in State Fi until the end of failure and

then shifts to State Ri+1. A HOL packet will be dropped after

the transmission fails for M times, i.e., when it leaves State

FM−1, and a new HOL packet is initially at State R0.

Let pt denote the probability of successful transmissions of

HOL packets at time slot t = 1, 2, . . . . The markov chain in

Fig. 1 is uniformly strongly ergodic if and only if the limit

lim
t→∞ pt = p (4)

exists. The steady-state probability distribution of the embed-

ded markov chain can then be obtained as

πRi
=

(1− p)i

1− (1− p)M
· πT , for i = 0, . . . ,M − 1, (5)

and

πFi
=

(1− p)i+1

1− (1− p)M
· πT , for i = 0, . . . ,M − 1. (6)

The interval between successive transitions, i.e., Vj+1−Vj ,

is called the holding time in State Xj , j = 0, 1, . . . . In

particular, the mean holding time τT in State T and the mean

holding time τFi
in State Fi, i = 0, . . . ,M −1, depend on the

transmission time of each packet, which equals one time slot.

The mean holding time τRi in State Ri, i = 0, . . . ,M − 1,

on the other hand, is determined by the backoff protocol.

Specially, it is given by the expected time interval when the

HOL packet stays at State Ri before it is transmitted. Recall

that qi denotes the probability of accessing the channel of a

State-Ri HOL packet in each time slot. The mean holding

time τRi in State Ri, i = 0, . . . ,M − 1, is thus given by

τRi =
1

qi
− 1. (7)

Finally, the limiting state probabilities of the Markov re-

newal process (X,V) are given by

π̃j =
πj · τj

πT · τT +
∑M−1

i=0 πFi · τF +
∑M−1

i=0 πRi · τRi

, (8)

j ∈ S, where S is the state space of X. Specifically, by

combining (5)-(8), the probability of one HOL packet being

in State T can be obtained as

π̃T =
1

1
1−(1−p)M

∑M−1
i=0

(1−p)i

qi

. (9)

B. Probability of Successful Transmissions of HOL packets

One HOL packet is successfully received when all the other

nodes do not attempt to access the channel and this HOL

packet is decoded by the receiver successfully. Therefore, we

have

p = Pr{Other HOL packets are in State Ri and do not

attempt to access the channel} · (1− ε), (10)

where ε is the packet error probability. According to the

embedded Markov chain shown in Fig. 1, the steady-state

probability of successful transmission of a HOL packet p can

be obtained as

p =

{
1−

M−1∑
i=1

π̃Ri
q
′
i

}n−1

· (1− ε). (11)

As the mean sojourn time of each HOL packet in State Ri is

given by τRi =
1
qi
−1, the equivalent transmission probability

is given by q
′
i =

1
τRi

= qi
1−qi

. We then have

p
with a large n≈ exp

{
−n

M−1∑
i=0

π̃Ri

qi
1− qi

}
· (1− ε). (12)

By combining (8), (9) and (11), the probability of successful

transmissions of HOL packets p can be further obtained as

p = exp

{
−nπ̃T

p

}
(1− ε) (13)

= exp

⎧⎨
⎩− n

p
1−(1−p)M

∑M−1
i=0

(1−p)i

qi

⎫⎬
⎭ (1− ε).
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Recall that one HOL packet would be discarded if and only

if its transmission fails for M times. The probability that a

HOL packet is dropped, pd, is then given by

pd = (1− p)M . (14)

The reliability η is defined as the probability that a HOL packet

is not dropped, i.e.,

η = 1− (1− p)M . (15)

Fig. 2 demonstrates how the packet error probability ε and

the probability of successful transmissions of HOL packets p
vary with the blocklength N with the number of information

bits per packet k = 100 or 1000. Specifically, it can be

observed from Fig. 2(a) that the packet error probability ε
decreases as the number of information bits k decreases or

the blocklength N increases. In particular, it would decrease

sharply within a small range of N . For example, with k = 100,

ε quickly drops from 1 to 0 when N increases from 20 to 40.

Generally, the point k
log2(1+ρ) is included in this small range of

N where ε has a significant change. For instance, in the case

of k = 100 and ρ = 10, ε drops from 1 to 0 when N increases

from 20 to 40 and the point k/ log2(1 + ρ) ≈ 29 ∈ (20, 40).
Moreover, for the probability of successful transmissions of

HOL packets p, it can be observed from Fig. 2(b) that as the

blocklength N increases or the number of information bits

k decreases, p increases since the packet error probability is

improved as shown in Fig. 2(a). p can also be improved with

a larger retry limit M .

III. NETWORK SUM RATE

In this section, we will characterize the network sum rate

and study how to properly select the initial transmission prob-

ability of each node q0 and the blocklength N to maximize

the network sum rate.

A. Maximum Sum Rate

The network sum rate is defined as the average successfully

transmitted information bits per channel use, which can be

obtained as

C = λ̂out ·R, (16)

where λ̂out is the network throughput, which equals the

fraction of time slots that have successful packet transmissions,

and the information encoding rate of each node R is given by

(2).

In saturated conditions that each node always has informa-

tion bits to transmit, the node throughput equals the service

rate of its queue. According to Fig. 1, each node has a

successful packet transmission if and only if its HOL packet

is in State T . Therefore, the node throughput equals the

probability of the HOL packet being in State T , π̃T , and the

network throughput is thus given by

λ̂out = nπ̃T = −p ln
p

1− ε
, (17)

by combining (9) and (13).

According to (1), (16) and (17), the network sum rate can

be derived as

C = − k

N
· p ln p

1− ε
. (18)

It can be seen from (3), (13) and (18) that for given signal

to noise ratio ρ and the number of information bits per packet

k, C is determined by the initial transmission probability of

each node q0 and the blocklength N . Intuitively, with a larger

blocklength N , the network throughput λ̂out can be improved

due to a lower packet error probability ε, which, however,

might be achieved at the cost of the information encoding

rate of each node R according to (2). Thus, to maximize the

network sum rate, the initial transmission probability of each

node q0 and the blocklength N should be jointly tuned. The

following theorem presents the maximal sum rate Cmax =
max{N,q0} C and the corresponding optimal settings of initial

transmission probability of each node q∗0 and the blocklength

N∗.

Theorem 1. The maximum sum rate Cmax is given by

Cmax =
k

N∗
1−Q

(
N∗ log2(1+ρ)−k+(log2 N∗)/2√

N∗V

)
e

, (19)

which is achieved when the blocklength N is set to N∗ and
the initial transmission probability q0 is set to q∗0 , where N∗

is the single non-zero root of the following equation

1 =Q

(
N log2(1 + ρ)−k+(log2 N)/2√

NV

)
+

1√
2π

exp

{
− (N log2(1 + ρ)−k+(log2 N)/2)2

2NV

}

· N log2(1 + ρ)+k− 1
ln 2−(log2 N)/2

2
√
NV

,

and q∗0 is given by

q∗0 =
p∗

n[1− (1− p∗)M ]

M−1∑
i=0

(1− p∗)i

Q(i)
, (20)

where p∗ =
(
1−Q

(
N∗ log2(1+ρ)−k+(log2 N∗)/2√

N∗V

))
e−1.

Proof: See Appendix A.

It is revealed in Theorem 1 that both the maximum sum rate

Cmax and the corresponding optimal blocklength N∗ depend

on the number of information bits per packet k and the signal-

to-noise ratio ρ, while is independent of the retry limit M .

Fig. 3(a) illustrates how the maximum sum rate Cmax varies

with the retry limit M with the number of information bits per

packet k = 100 or 1000. It can be observed from Fig. 3(a) that

Cmax is independent of the retry limit M , and increases as k
increases. As k → ∞, we have lim

k→∞
Cmax = e−1 log2(1+ ρ)

according to (19), implying that the performance gain achieved

by increasing k would be limited if k is large. In this case,

as the optimal blocklength also goes to infinity according to

(20), the information encoding rate of each node R approaches

the channel capacity log2(1 + ρ). With a small number of
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Fig. 3. Maximum sum rate Cmax and the reliability η versus the retry limit M . ρ = 10, n = 20. N = N∗. q0 = q∗0 . (a) Cmax versus M . (b) η versus M .
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Fig. 4. (a) Network throughput λ̂out versus the initial backoff factor q0. ρ = 10. n = 50. k = 100. (b) Network sum rate C versus the blocklength N .
ρ = 10. n = 50. M = 1. q0 = q∗0 . Q(i) = 2−i.

information bits per packet k, nevertheless, a loss in the

network sum rate would incur in the short blocklength region.

Although the maximum sum rate Cmax does not depend

on M , the reliability η can be significantly improved as M
increases, as Fig. 3(b) illustrates. Here we can see that from

the perspective of the sum rate performance, a larger retry limit

M is preferable, as the maximum sum rate is insensitive to M
yet the reliability performance can be significantly improved.

In contrast to the sum rate performance, the reliability is

insensitive to the number of information bits per packet k
when sum rate C is maximized according to Theorem 1.

B. Simulation Results

In this subsection, we present simulation results to verify

the proceeding analysis. Note that event-driven simulations

are conducted, and each simulation is carried out for 106

time slots. The simulation setting is consistent with the system

model and the details are omit here.

Fig. 4(a) shows how the network throughput λ̂out varies

with initial transmission probability q0 under various values

of the blocklength N and the retry limit M . In simulations,

we count the total number of successful access requests

in each simulation run, i.e., 106 time slots. The network

throughput is then obtained by calculating the ratio of the

number of successful access requests to the number of time

slots. It can be clearly seen from Fig. 4(a) that the network

throughput λ̂out is sensitive to the variation of q0, implying

that to maximize λ̂out, the initial transmission probability q0
should be carefully selected. We can observe that by optimally

tuning q0 according to (20), the maximum network throughput

λ̂max can be achieved. Note that the network sum rate C
is proportional to the network throughput λ̂out, as shown in

(18). Thus, the optimal initial transmission probability q∗0 for

maximizing C is equivalent to that for maximizing λ̂out. It

is also demonstrated in Fig. 4(a) that the maximum network

throughput λ̂max is independent of the retry limit M , and

increases as the blocklength N increases. The simulation

results match with the analysis well.

Fig. 4(b) further presents how the network sum rate C
varies with the blocklength N with the network throughput

is maximized. As Theorem 1 indicates, in this case, N needs

to be further tuned to optimize the network sum rate C, and

the optimal blocklength N can be obtained according to (20).

The simulation results in Fig. 4(b) indicates that the network

sum rate is very sensitive to N . When N is too small, C
is degraded due to a large packet error probability ε. When

N is large, although ε is significantly improved, each node’s

information encoding rate becomes small, leading to a low
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network sum rate.

IV. CONCLUSION

This paper characterizes the sum rate performance of Aloha

networks with packet dropping in the finite blocklength region.

By deriving the probability of successful transmissions of

HOL packets, an explicit expression of the network sum rate

is obtained and further optimized by jointly choosing the

transmission probabilities of nodes and the blocklength of

packets. The effect of the number of information bits per

packet and the retry limit on the network optimal performance

is characterized. It is found that increasing the retry limit

does not affect the maximum sum rate while can improve the

reliability. To enhance the sum rate performance, on the other

hand, the network should enlarge the number of information

bits per packet.

APPENDIX A

PROOF OF THEOREM 1

According to (17), λ̂out depends on the probability of suc-

cessful transmissions of HOL packets p, and in turn depends

on the initial transmission probability of each node q0. By

carefully turning q0, λ̂out can be maximized. By combining

(1) and (16), we then have

Cmax = max
{N,q0}

k

N
· λ̂out = max

N

k

N
max
{q0}

λ̂out = max
N

k

N
λ̂max,

(21)

where the maximum network throughput λ̂max can be written

as

λ̂max = max
{q0}

λ̂out =
1− ε

e
, (22)

which is achieved when the initial transmission probability is

set to be

q0 =
e−1(1− ε)

n[1− (1− e−1(1− ε))M ]

M−1∑
i=0

(1− e−1(1− ε))i

Q(i)
.

(23)

Therefore, we have

Cmax = max
{N}

k

N
· 1− ε

e
, (24)

by combining (21) and (22).

Let C(N) = k
N · 1−ε

e . Then the derivative of C with

respective to N is given by

C ′(N) = − k

eN2
[1− ε(N)−Nε′(N)]. (25)

Letting C ′(N) = 0 yields the optimal blocklength N∗, which

is given by (20). The maximun sum rate Cmax is then obtained

by combining (24) and N = N∗. The optimal transmission

probability can then be obtained by combining (20) and (23).
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