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Abstract—In large-scale wireless networks, severe interference
may incur that leads to the age of information (AoI) degradation.
It is therefore important to study how to optimize the AoI
performance. This paper focuses on the average AoI minimization
in random access Poisson networks. By considering the spatiotem-
poral interactions amongst the transmitters, an expression of the
average AoI is derived, based on which the optimal average AoI
and the corresponding optimal packet arrival rate and channel
access probability are further characterized. We further compare
the average AoI optimization with the peak AoI optimization. The
comparison reveals that the optimal channel access probability for
the average AoI optimization and the peak AoI optimization are
the same. Yet, the optimal packet arrival rate for the average AoI
optimization is smaller than that for the peak AoI optimization.
The gap enlarges when the node deployment density becomes
small.

Index Terms—Age of information, Poisson point process, ran-
dom access.

I. INTRODUCTION

Information freshness has become an important performance
metric in low-latency wireless communication system design-
ing since fresh data is more valuable than stale data for real-
time monitoring or control. To assess the timeliness of deliv-
ered messages, a novel performance metric, Age of Information
(AoI), has been put forward in [1] [2]. Age of information is
an end-to-end metric that reflects the time elapsed since the
last update was generated, and has gained wide attention in
both academia and industry.

There have been extensive works on optimizing the AoI
performance for wireless networks. [1]–[4] focus on point-
to-point communication case. Intuitively, the update packet
should be transmitted as soon as possible to obtain better
AoI performance. However, by the broadcast nature of the
wireless channel, transmitters that share the same spectrum in
space would interfere with each other. Then, the high channel
access probability for each traffic link would cause severe
interference in the network and let the update packet backlog
in the queueing system. To understand the AoI performance
of wide-area wireless communication networks, [5]–[11] focus
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on the AoI performance in large-scale networks from the joint
perspective of queuing theory and stochastic geometry. A high
channel access probability causes more significant aggregate
interference and leads to AoI performance degradation. On the
other hand, a low channel access probability will also affect
AoI performance due to the long waiting time in the queue.
For the packet arrival process, the update packet arrives at the
system frequently, which will make the update packets stay
in the queueing for too long. In comparison, the lower arrival
rate leads the terminal information unable to be updated in
time and affects AoI performance. Therefore, it is essential to
study how to properly tune the packet arrival rate and channel
access probability to optimize the AoI performance. The peak
AoI performance was studied in [12] for large-scale Poisson
networks. Both the explicit expressions of the optimal peak
AoI and corresponding parameters are obtained, leaving the
average AoI optimization unexplored. In this article, we aim
to fill this gap by optimizing the average AoI.

Note that in the existing works, peak AoI and average AoI
are the two key metrics that have been widely used for AoI
performance evaluation [3]. The peak AoI is the maximum
value of the AoI immediately before an update is received
and can be utilized in applications which concerned about the
age performance in the worst-case [7], [12]–[14]. The average
AoI, on the other hand, denotes the average value of AoI
evolution in the whole time horizon, which is often used to
evaluate the AoI performance precisely [15]–[18]. Intuitively,
the optimal system parameters are distinct towards different
AoI optimization objectives. Yet, it remains unknown on how
one metric performs when another one is optimized.

To address this issue, this paper derives an expression of the
average AoI in the random access Poisson bipolar networks.
Individual-optimization and joint-optimization algorithms are
further proposed by tuning the packet arrival rate and channel
access probability individually or jointly. We compare the
average AoI optimization with the peak AoI optimization in
[12]. The comparison reveals that the optimal channel access
probability for the average AoI optimization and that for peak
AoI optimization are the same. Yet, the optimal packet arrival
rate for average AoI optimization is smaller than that for peak
AoI optimization. The gap enlarges when the node deployment
density becomes small.

The remainder of the paper is organized as follows. Section
II presents the system model and preliminary analysis. In
Section III, the average AoI is derived and optimized by tuning
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the channel access probability and the packet arrival rate.
Section IV compares the peak AoI optimization and average
AoI optimization. Finally, Section V summarizes the work.

II. SYSTEM MODEL AND PRELIMINARY ANALYSIS

Consider a mobile D2D network scenario which is modeled
as a Poisson bipolar network. Particularly, the network con-
sists of point-to-point links where transmitters are distributed
according to a homogeneous Poisson point process (PPP) of
density λ. The corresponding receiver is situated in distance
R and oriented at a random direction. Due to the displacement
laws in stochastic geometry, the distribution of receivers is also
a PPP of density λ. We consider the high mobility random walk
model, where in each time slot, each transmitter is displaced
from its initial position to a new position and receivers move
accordingly.

On channel modeling, we consider a path-loss exponent
α > 2 and Rayleigh fading is assumed to characterize the
small-scale fading. Each transmission sends the updated infor-
mation with the same power. Due to all the nodes utilizing the
same spectrum for packet delivery, each transmission would be
affected by others. Consider a packet is successfully delivered
if the received SINR exceeds a decoding threshold θ. Then, the
receiver sends an ACK feedback message so that the packet
can be moved from the buffer. Otherwise, the receiver sends
a NACK feedback message and the packet is retransmitted
in the next available time slot until successful. Therefore, the
corresponding probability of successful transmission for node
i can be written as

pi(t) = P (SINRi(t) > θ). (1)

The time is slotted into equal-length intervals, and the trans-
mission of each packet lasts for one slot. The packets arrive
at each transmitter following independent Bernoulli processes
of mean rate ξ. Each transmitter is equipped with a size-
one buffer, and hence a newly incoming packet will be
dropped if the buffer is full. In each time slot, transmitters
with non-empty buffers will access the channel with a fixed
channel access probability q. If the received SINR exceeds a
decoding threshold θ, the packet will send out successfully
and queue buffer will be emptied; otherwise, the packet will
be retransmitted in the next time slot until success. Then, the
dynamics of packet transmissions over each wireless link can
be regarded as a Geo/Geo/1/1 queue with the service rate qp
and followed FCFS discipline.

We investigate the AoI performance, which captures the
timeliness of information delivered at the receiver end. The
evolution of AoI A(t) over time for a Geo/Geo/1/1/FCFS
queue is illustrated in Fig. 1, where tk denotes the time slot
in which the kth packet arrived, t

′

k denotes the time slot
in which the kth packet is successfully transmitted, and t∗k
denotes the time slot in which the kth packet is dropped.
From this figure, we can see that the AoI A(t) increases
linearly over time and plummets at time slots t

′

1, t
′

2, t
′

3, . . . , t
′

n

where packets are successfully transmitted. Notably, during
the period between t2 and t

′

2, there is a packet arrivals at
slot t∗ but is immediately discarded because the buffer can

Fig. 1. An example of the AoI evolution over time.

accommodate only one packet. Formally, the progress of such
a process can be written as:

A(t+ 1) =

{
A(t) + 1 transmission failure
t− tk + 1 transmission successful. (2)

In this paper, we focus on the average AoI, denoted as Aave,
which is defined as the time-average of the entire age process
A(t). Such a metric is given by

Aave = lim
T→∞

sup
1

T

T∑
t=1

A(t). (3)

III. OPTIMIZATION OF AVERAGE AOI

In this section, we first derive an expression of the average
AoI in the random-access Poisson network. Based on that, we
then optimize the average AoI by tuning the channel access
probability q and the packet arrival rate ξ.

The probability of successful transmission of a generic
transmitter has been obtained in [12] as

p = exp

{
−λcR2 qξ

ξ + pq(1− ξ)
− θRαγ−1

}
, (4)

where α is the path-loss exponent, γ is the SNR at the receiver
and c = πθ

2
α / sinc( 2

α ). According to Fig. 1, the kth packet’s
service time can be expressed as Tk = t

′

k − tk, and the inter-
departure time between the (k − 1)th packet and kth packet
can be written as Yk = t

′

k − t
′

k−1. Let r denotes the effective
packet arrival rate, the average AoI has been derived in [5]
and as

Aave = r

(
1

2
E[Y 2

k ] + E[Tk−1Yk] +
1

2
E[Yk]

)
1. (5)

Lemma 1 gives the explicit expression of the average AoI.

Lemma 1. Under the Geo/Geo/1/1 queue assumption with
FCFS discipline, the average AoI can be written as

Aave =
2

qp
+

qp( 1ξ − 1)

ξ + qp− ξqp
. (6)

Proof. See Appendix A

Lemma 1 shows that the average AoI Aave is affected by
the channel access probability q and the packet arrival rate
ξ. Consequently, it is of great importance to explore how to

1The difference between + 1
2
E[Yk] here and − 1

2
E[Yk] in [5] is due to the

difference in the definitions of initial packet age.
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(a) (b) (c)
Fig. 2. (a) q∗ in individual and joint optimization (b) ξ∗ in individual and joint optimization (c) Average AoI Aave in fixed parameter, individual optimal
tuning the channel access probability with fixed ξ = 0.5, individual optimal tuning the channel access probability with fixed q = 0.6 and joint optimal tuning.
System parameter: Path-loss exponent α = 3, decoding threshold θ = 0.8, TX-RX distance R = 3, SNR γ = 20

properly tune the channel access probability q and the packet
arrival rate ξ so as to minimize the average AoI Aave, we then
formulate the following optimization problem

A∗ave =min
{q,ξ}

Aave

s.t. q ∈ (0, 1],

ξ ∈ (0, 1].

(7)

The optimization problem in (7) can be decomposed into
two sub-optimization problems: optimal tuning of channel
access probability q for a fixed ξ, and optimal tuning of the
packet arrival rate ξ for a fixed q.

A. Optimal Tuning of Channel Access Probability

The following theorem presents the optimal channel access
probability q∗ξ that minimizes the average AoI Aave, i.e.,

A
q=q∗ξ
ave = min

q
Aave.

Theorem 1. Given a packet arrival rate ξ, the optimal average
AoI A

q=q∗ξ
ave is given by

A
q=q∗ξ
ave =


2(λcR2 exp{θRαγ−1+1})2+ 1

ξ (
1
ξ−1)

λcR2 exp {θRαγ−1+1} − 2
ξ + 2

if λcR2>1+p∗(1−ξ)
ξ

2
p∗
+

p∗( 1
ξ−1)

ξ+p∗−ξp∗ otherwise,
(8)

which is achieved when the channel access probability q is set
to be

q∗ξ =

{
1

λcR2− 1−ξ
ξ exp {−θRαγ−1−1}

if λcR2 > 1 + p∗(1−ξ)
ξ

1 otherwise,
(9)

where p∗ is the non-zero root of the following equation

p∗ = exp

{
−λcR2 ξ

ξ + p∗(1− ξ)
− θRαγ−1

}
. (10)

Proof. See Appendix B

Theorem 1 shows that the optimal channel access probability
q∗ξ = 1 when λcR2 ≤ 1+ p∗(1−ξ)

ξ , indicating that in this case,
each node would transmit its packet as long as the buffer is

nonempty. As the node deployment density λ, the distance
between each TX-RX distance R or the decoding threshold θ
(equivalently, c according to (4)) grows, we have q∗ξ < 1 due
to either mounting channel contention or a lower chance of
successful packet decoding.

B. Optimal Tuning of Packet Arrival Rate

The following theorem presents the optimal packet arrival
rate ξ∗q that minimizes the average AoI Aave, i.e., A

ξ=ξ∗q
ave =

min
ξ

Aave.

Theorem 2. Given the channel access probability q, the
optimal packet arrival rate ξ∗q for minimizing the average AoI
Aave is given by

ξ∗q =

{
ξ1 if λcR2 > exp{−λcR2q−θRbγ−1}

2

1 otherwise,
(11)

where ξ1 ∈ (0, 1) is the single root of the following equation

ξ2 =
qp ((2− ξ) (1− qp) ξ + qp) (λcR2pξ(1− ξ)− ( ξ

q
+ p(1− ξ))2)

λcR2 (−2(ξ + pq − ξpq)2 + q2p2(1− ξ))
.

(12)

Proof. See Appendix C

Theorem 2 reveals that the optimal packet arrival rate ξ∗q = 1
when λcR2 < exp{−λcR2q − θRbγ−1}/2, indicating that
in this case, to minimize the average AoI, new packets shall
be updated as frequent as possible. Similarly to Theorem 2,
as λ, R, c grows, due to mounting channel contention or a
low probability of successful transmission, the optimal packet
arrival rate in average AoI optimization ξ∗q < 1.

C. Joint Optimal-Tuning

So far, we have characterized the optimal tuning of the
channel access probability for given packet arrival rate ξ, and
the optimal tuning of arrival rate ξ for given channel access
probability q. In this subsection, we will study how to jointly
tune the channel access probability q and the arrival rate ξ to
optimize the average AoI.
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Algorithm 1 Iterative Algorithm for Calculating q∗ and ξ∗

1: Input λ, R, θ, γ, b, ε
2: Initialize i = 1, ξ∗i chosen randomly from (0,1]
3: repeat
4: Compute q∗i based on Theorem 1 and ξ∗i
5: Compute Â(i)

ave based on q∗i , ξ∗i and Theorem 1
6: i← i+ 1
7: Compute ξ∗i based on Theorem 2 and q∗i−1
8: Compute Â(i)

ave based on q∗i−1, ξ∗i and (5) and (6)
9: until |Â(i)

ave − Â(i−1)
ave | < ε

10: Let q∗ ← q∗i−1, ξ∗ ← ξ∗i and A∗ave ← Â
(i)
ave

11: return q∗, ξ∗, A∗ave

Due to the implicit nature of the average AoI, it is hard, if
not impossible, to explicitly characterize the optimal channel
access probability q∗ and the optimal arrival rate ξ∗. Instead,
based on Theorem 1 and Theorem 2, we propose an iterative
algorithm, i.e., Algorithm 1, to obtain q∗ and ξ∗. Specifically,
let i represent the number of iteration, i ∈ 1, 2, ..., q∗i is
the channel access probability in ith iteration and ξ∗i is the
arrival rate in ith iteration. As shown in Algorithm 1, we
initialize ξ∗1 by randomly choosing a value from (0, 1], based
on which and Theorem 1, q∗1 is obtained. With q∗1 and Theorem
2, we can further calculate ξ∗2 and then q∗1 , so on and so
forth. In each update of either q∗i or ξ∗i , we compute the
corresponding average AoI. The iterations come to an end
when the termination condition |Â(i)

ave−Â(i−1)
ave | < ε is satisfied,

where ε is a small positive number.

D. Discussions

Fig. 2 illustrate how the optimal channel access probability,
the optimal packet arrival rate, and the corresponding average
AoI vary with the node deployment density. Notably, in Fig.
2(a), we can see that, in the individual tuning, the optimal
channel access probability is equal to one when node deploy-
ment density is low, and decreases as the node deployment
density increases. In joint tuning, the optimal channel access
probability is always equal to one.

Fig. 2(b) demonstrates that the optimal packet arrival rate in
joint tuning is lower than that in individual tuning, since the
optimal channel access rate is equal to one in joint tune. A
lower packet arrival rate is thus required to reduce aggregate
interference in the network and improve AoI performance.

Fig. 2(c) shows how the average AoI varies with node
deployment density in the case of 1) fixed packet arrival
rate ξ and channel access probability q; 2) optimal-tuning of
q for fixed ξ; 3) optimal-tuning of ξ for fixed q; 4) joint-
optimal tuning. We can see that with the fixed packet arrival
rate ξ and channel access probability q, the average AoI
exponentially grows with node deployment density λ, which is
sharply contrasted with that after optimization, which increases
linearly with node deployment density λ. It indicates that the
average AoI degrades severely when the nodes deployment
density λ is large, and careful system parameter tuning is
necessary.

IV. COMPARING PEAK AOI OPTIMIZATION AND AVERAGE
AOI OPTIMIZATION

The peak AoI has been derived in [12], which can be
expressed as

Ap = E[Tk−1] + E[Yk] =
2

qp
+

1

ξ
− 1, (13)

and average AoI has been given in lemma 1 and copy as
following

Aave = r(
1

2
E[Y 2

k ] +E[Tk−1Yk] +
1

2
E[Yk]) =

2

qp
+

qp( 1
ξ
− 1)

ξ + qp− ξqp .
(14)

Compared with the peak AoI metric, the average AoI is not
only affected by the expectation of service time 1

qp and the
inter-arrival time 1

ξ , but also the non-empty probability π0 =
qp

ξ+qp−ξqp .
Fig. 3 illustrates that the average AoI and peak AoI vary

with the channel access probability and the packet arrival rate
by changing the node deploy density. By comparing Theorem
1 in [12] and Theorem 1 in this paper, we find that the
optimal channel access probability of optimizing the peak AoI
is identical to that for optimizing the average AoI. From Fig.
3(a), we can observe that two metrics could be simultaneously
optimized by tuning the channel access probability, when the
packet arrival rate ξ is given. In Fig. 3(b), in contrast, it can be
observed that the optimal packet arrival rate is different from
each other.

We analyze this phenomenon from the perspective of queu-
ing theory. Specifically, according to (6) and (13), both peak
AoI and average AoI are sensitive to the service rate. Optimally
tuning the channel access probability q benefits the service
rate. Therefore, the optimal q for peak AoI optimization and
that for average AoI optimization are the same. In contrast to
the peak AoI, only the average AoI is sensitive to the non-
empty probability. According to (4) and (6), tuning the packet
arrival rate ξ would further change the non-empty probability.
Therefore, the optimal packet arrival rate ξ∗ for peak AoI
optimization and that for average AoI optimization might be
different.

To take a closer look, Fig. 4 illustrates the difference be-
tween the optimal packet arrival rate in peak AoI optimization
and average AoI optimization. It can be clearly seen from
Fig. 4(a) that the optimal packet arrival rate in peak AoI
optimization is larger than that in average AoI optimization.
Fig. 4(b) illustrates the optimal parameter in joint optimal-
tuning. It can be observed that the optimal channel access
probability q∗ = 1 for both the joint optimization of the peak
AoI and average AoI. Yet, the optimal packet arrival rate ξA

∗
p

to achieve the optimal peak AoI is larger than that in ξA
∗
ave . The

gap between them decreases as the node deployment density
λ increases.

V. CONCLUSION

This paper focuses on the average AoI minimization in ran-
dom access Poisson networks. By considering the spatiotem-
poral interactions amongst the transmitters, an expression of
the average AoI is derived. We compare the average AoI
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(a) (b)
Fig. 3. Peak AoI and average AoI. System parameter: Path-loss exponent α = 3, decoding threshold θ = 0.8, SNR γ = 20, node deployment density
λ ∈ {0.01, 0.03, 0.05}. (a) AoI versus channel access probability q (ξ = 0.2,R = 3). (b) AoI versus the packet arrival rate ξ (q = 1,R = 2).

(a) (b)
Fig. 4. Optimal parameter of peak AoI and average AoI. System parameter: Path-loss exponent α = 3, decoding threshold θ = 0.8, TX-RX distance R = 3,
SNR γ = 20. (a) (Individual optimal) ξ∗q in average AoI and peak AoI, (b) (Joint optimal) ξ∗ and q∗ in average and peak AoI.

optimization results with that of the peak AoI optimization
in [12]. We find that the average AoI and peak AoI can
be optimized simultaneously when individual tuning of the
channel access probability. The optimal packet arrival rate
might be different from that to minimize the peak AoI. In joint
optimization, we design an alternative iterative algorithm by
utilizing the results of individual-tuning. Then, we find that the
optimal channel access probability is equal to one for both the
peak AoI and average AoI. Yet, the optimal packet arrival rate
to minimized the average AoI is smaller than that to minimize
peak AoI, and the gap diminishes when the node deployment
density becomes large.

APPENDIX A
PROOF OF LEMMA 1

In the average AoI i.e., (5), r is the effective arrival rate of
Geo/Geo/1/1 queue, which has been derived in [12] as r =

ξqp
ξ+qp−ξqp . Tk is the access delay of kth packet, and is defined
as the time spent from the generation of the packet until its
successful transmission. The mean access delay given by

E[Tk−1] =
1
qp . (15)

Yk is the sojourn time that the kth packet in the system and
can be written as Yk = Y ak +Y sk , where Y ak denotes the time-

interval between the departure of (k − 1)
th packet and the

arrival of kth packet, Y sk denotes the access delay, then

E[Yk] = E[Y ak ] + E[Y sk ] =
1
ξ − 1 + 1

qp , (16)

E[Y 2
k ] = E[(Y ak )

2] + 2E[Y ak ]E[Y sk ] + E[(Y sk )
2] (17)

=
(

1−ξ
ξ2 + (1−ξ)2

ξ2

)
+ 2 ·

(
1
ξ − 1

)
· 1
qp +

2−qp
(qp)2 .

Since Yk and Tk are independent, we have

E[Tk−1Yk] = E[Tk−1]E[Yk] =
1
qp ·

(
1
ξ +

1
qp − 1

)
. (18)

By submitting (15)-(18) into (5), The explicit expression of
average AoI, i.e, (6), can be obtained.

APPENDIX B
PROOF OF THEOREM 1

Based on (6), we have

∂Aave
∂q =

(
p+ q ∂p∂q

)
×
(
−2(ξ+qp−ξqp)2+(1−ξ)q2p2

q2p2(ξ+qp−ξqp)2

)
. (19)

In the following, we will show that for q ∈ (0, 1), lim
q→0

∂Aave
∂q <

0, lim
q→1

∂Aave
∂q > 0 for λcR2 > 1 + p∗(1−ξ)

ξ and ∂Aave
∂q = 0 has

only one non-zero root, implying that the average AoI Aave
first declines and then grows for q ∈ (0, 1) and minimized at
the point, which is determined by the root of ∂Aave

∂q = 0.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 11,2023 at 06:00:47 UTC from IEEE Xplore.  Restrictions apply. 



First, since ξ, q, p ∈ (0, 1], we have ξ−ξqp = ξ(1−qp) > 0
and the second item of the right side of (19) as

−2(ξ+qp−ξqp)2+(1−ξ)q2p2

q2p2(ξ+qp−ξqp)2 < −2(qp)2+(1−ξ)q2p2

q2p2(ξ+qp−ξqp)2 < 0. (20)

We can then only focus on the first item of the right side of
(19) because it determines the roots of ∂Aave

∂q = 0. ∂Aave
∂q = 0

can be equivalent changed as λcR2 = 1
q + p 1−ξ

ξ . We denote
f(p) = 1

q + p 1−ξ
ξ − λcR2. It has been shown in [12] that

∂p
∂q < 0 and therefore the derivative in terms of q

f
′
(q) = − 1

q2 + ∂p
∂q ·

1−ξ
ξ < 0, (21)

implying that f(q) is a monotonic decreasing function of q for
q ∈ (0, 1]. Since

lim
q→0

∂Aave
∂q = lim

q→0

−2
q2p|q→0

= lim
q→0

−2
q2 exp{−θRαγ−1} < 0, (22)

and

lim
q→1

∂Aave
∂q =


lim
q→1

1
q + p 1−ξ

ξ − λcR
2 > 0

if λcR2 > 1 +
p|q→1(1−ξ)

ξ

lim
q→1

1
q + p 1−ξ

ξ − λcR
2 ≤ 0 otherwise.

(23)
By combining (19)–(23), we show that if λcR2 ≤ 1 +
p|q→1(1−ξ)

ξ , then the average AoI Aave decline for q ∈ (0, 1]
and is minimized at q = 1. Otherwise, Aave declines and then
grows for q ∈ (0, 1] and minimized at the point, which is
determined by the root of ∂Aave

∂q = 0.

APPENDIX C
PROOF OF THEOREM 2

According to (4) and (6), we have

∂Aave
∂ξ

=
−qpξ(2−ξ)(1−qp)−q2p2

ξ2(ξ+qp−ξqp)2 +
((
− 2
qp2

+
q(1−ξ)

(ξ+qp−ξqp)2

)
×
(

λcR2p2

λcR2pξ(1−ξ)−(
ξ
q
+p(1−ξ))2

))
.

(24)

∂Aave
∂ξ = 0 can be equivalent changed as

1

λcR2
=

p 1−ξ
ξ

( 1
q
+ p(1−ξ)

ξ
)2

+

2qξ2

p
( 1
q
+ p 1−ξ

ξ
)2 − (1− ξ)qp

((2− ξ)(1− qp) + qp
ξ
)( 1
q
+ p(1−ξ)

ξ
)2

(25)
It has been shown in [12] that ∂p∂ξ < 0. We denote that g(ξ) =
(2− ξ)(1− qp)+ qp

ξ , and derivation of g(ξ) can be written as

g
′
(ξ) = − (1− qp)− qp

ξ2
+ q

(
−2 + ξ + 1

ξ

)
∂p
∂ξ

≤ − (1− qp)− qp
ξ2

+ q
(
−2 + 2

√
ξ · 1

ξ

)
∂p
∂ξ
< 0

(26)

Thus, g(ξ) is a monotonic decreases function of ξ for ξ ∈
(0, 1]. Then, we denote t(ξ) = p 1−ξ

ξ , t(ξ) is a monotonic
decreases function of ξ for ξ ∈ (0, 1]. Then, by combining
the rest parts, the right side of (25) is a monotonic increases
function of ξ for ξ ∈ (0, 1], and 1

λcR2 is a constant value.
Thus, ∂Aave

∂ξ = 0 has one root at most.
Then, by combining (4) and (24), we then have

lim
ξ→0

∂Aave
∂ξ

= − 1
ξ

(
1
ξ
− λcR2 1−exp{−θRbγ−1}

exp{−2θRbγ−1}

)
→ −∞ < 0, (27)

and when lim
ξ→1

∂Aave
∂ξ > 0, the average AoI Aave can be

optimized for ξ ∈ (0, 1). Combining (24) and (4) , we have

lim
ξ→1

∂Aave
∂ξ = 2λcR2q − q exp{−λcR2q − θRbγ−1}. (28)

Thus, similar to the proof in Appendix B, when

λcR2 > exp{−λcR2q−θRbγ−1}
2 , (29)

the average AoI Aave can be optimized for ξ ∈ (0, 1);
otherwise, the average AoI Aave monotonically decreases for
ξ ∈ (0, 1]. Consequently, Theorem 2 can be obtained.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?,” in Proc. IEEE INFOCOM, Orlando, FL, USA, pp. 2731–
2735, Mar. 2012.

[2] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, USA,
pp. 2666–2670, Jul. 2012.

[3] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. Inf.
Theory, vol. 62, no. 4, pp. 1897–1910, Apr. 2016.

[4] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Controlling the age of information: Buffer size, dead-
line, and packet replacement,” in Proc. IEEE MILCOM, Baltimore, MD,
USA, pp. 301–306, Nov. 2016.

[5] Y. Hu, Y. Zhong, and W. Zhang, “Age of information in poisson
networks,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP)
Hangzhou, China, pp. 1–6, Oct. 2018.

[6] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “Optimizing
information freshness in wireless networks: A stochastic geometry
approach,” IEEE Trans. Mobile. Comput., vol. 20, pp. 2269–2280, Jun.
2021.

[7] M. Emara, H. Elsawy, and G. Bauch, “A spatiotemporal model for peak
AoI in uplink IoT networks: Time versus event-triggered traffic,” IEEE
Internet of Things J., vol. 7, no. 8, pp. 6762–6777, Aug. 2020.

[8] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “Age of information
in random access networks: A spatiotemporal study,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Taipei, Taiwan, pp. 1–6, Dec.
2020.

[9] H. H. Yang, C. Xu, X. Wang, D. Feng, and T. Q. S. Quek, “Understand-
ing age of information in large-scale wireless networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 5, pp. 3196–3210, May 2021.

[10] P. D. Mankar, Z. Chen, M. A. Abd-Elmagid, N. Pappas, and H. S.
Dhillon, “Throughput and age of information in a cellular-based iot
network,” to appear in IEEE Trans. Wireless Commun., 2021.

[11] P. D. Mankar, M. A. Abd-Elmagid, and H. S. Dhillon, “Spatial distribu-
tion of the mean peak age of information in wireless networks,” IEEE
Trans. Wireless Commun., vol. 20, no. 7, pp. 4465–4479, 2021.

[12] X. Sun, F. Zhao, H. H. Yang, W. Zhan, X. Wang, and T. Q. S. Quek,
“Optimizing age of information in random-access poisson networks,” to
appear in IEEE Internet of Things J., 2021.

[13] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, China, pp. 1681–1685, 2015.

[14] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “Locally
adaptive scheduling policy for optimizing information freshness in
wireless networks,” in proc. IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, pp. 1–6, 2019.

[15] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broadcast
wireless networks,” IEEE/ACM Trans. Networking, vol. 26, no. 6,
pp. 2637–2650, Dec. 2018.

[16] I. Kadota and E. Modiano, “Minimizing the age of information in
wireless networks with stochastic arrivals,” IEEE Trans. Mobile Comput.,
vol. 20, no. 3, pp. 1173–1185, Mar. 2021.

[17] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the internet of things,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 7468–7482, Nov. 2019.

[18] J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Closed-form
whittle’s index-enabled random access for timely status update,” IEEE
Trans. Commun., vol. 68, no. 3, pp. 1538–1551, Mar. 2020.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on March 11,2023 at 06:00:47 UTC from IEEE Xplore.  Restrictions apply. 


